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Abstract

Choices from linear budget sets are often used to recover consumer's

preferences. The classic method uses revealed preference theory to

construct non-parametric bounds on the indi�erence curve that passes

through a given bundle. We show that these bounds do not apply to

non-convex preferences, and therefore may lead to erroneous predictions

and welfare analysis. We suggest an alternative that is based solely on

the assumption of monotonicity of preferences.
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1 Introduction

Recovery of consumers' preferences, and in particular their risk attitudes,

plays an important role in �nancial, health and insurance markets. Varian

(1982) suggests a non-parametric recovery method that partially identi�es the

preferences of a consistent decision maker (henceforth, DM) by construct-

ing, for every bundle, upper and lower bounds on the indi�erence curve that

passes through this bundle. In this short paper, we wish to draw attention to

the assumption of convexity of preferences implicitly invoked when using this

method.

Indeed, this restriction does not appear in the statement of Varian's sug-

gested method (Fact 5) and, despite being a textbook material and providing

the foundation for partial identi�cation of preferences, this issue was never

discussed in the literature.

We introduce two examples that demonstrate that if a data set is gen-

erated by a DM who correctly maximizes a non-convex preference relation,

the underlying indi�erence curves may not respect the non-parametric bounds

suggested in Varian (1982). These examples are used to clarify the techni-

cal issue that causes this discrepancy. Moreover, we �nd this exclusion to be

unwarranted, in particular in the context of prediction and welfare analysis

in domains where non-convex preferences are crucial and frequent (e.g. risk,

ambiguity and other-regarding preferences).

Hence, we provide an alternative approach where the upper and lower

bounds on the indi�erence curve that passes through a given bundle are con-

structed using only the assumption of monotonicity of preferences. In domains

where bundles are composed of goods, this alternative approach is shown to be

looser but more reliable than the original approach for prediction and welfare

analysis.
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2 Varian's Fact 5

2.1 Preliminaries

Consider a DM who chooses bundles xi ∈ <K+ (i = {1, . . . , n}) from linear

budgets
{
x : pix ≤ pixi, pi ∈ <K++

}
. Let D =

{
(pi, xi)

n
i=1

}
be a �nite data

set, where xi is the chosen bundle at prices pi. The ranking (preference)

information encoded in the observed choices is summarized by the following

binary relations.

De�nition 1. Let D =
{
(pi, xi)

n
i=1

}
. An observed bundle xi ∈ <K+ is

1. directly revealed preferred to a bundle x ∈ <K+ , denoted xiR0
Dx, if p

ixi ≥
pix.

2. strictly directly revealed preferred to a bundle x ∈ <K+ , denoted xiP 0
Dx,

if pixi > pix.

3. revealed preferred to a bundle x ∈ <K+ , denoted xiRDx, if there exists a

sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

xiR0
Dx

j, xjR0
Dx

k, . . . , xmR0
Dx.

4. strictly revealed preferred to a bundle x ∈ <K+ , denoted xiPDx, if there
exists a sequence of observed bundles

(
xj, xk, . . . , xm

)
such that

xiR0
Dx

j, xjR0
Dx

k, . . . , xmR0
Dx and at least one of them is strict.

The data is said to be consistent if it satis�es the General Axiom of Revealed

Preference.

De�nition 2. Data set D satis�es the General Axiom of Revealed Preference

(GARP) if for every pair of observed bundles, xiRDx
j implies not xjP 0

Dx
i.

The following de�nition relates the revealed preference information implied

by observed choices to the ranking induced by utility maximization.

De�nition 3. A utility function u : <K+→ < rationalizes a data set D, if for

every observed bundle xi ∈ <K+ , u(xi) ≥ u(x) for all x such that xiR0
Dx. We

say that D is rationalizable if such u (·) exists.
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Afriat's celebrated theorem provides tight conditions for the rationalizabil-

ity of a �nite data set.

Theorem. (Afriat, 1967) The following conditions are equivalent:

1. There exists a non-satiated utility function that rationalizes the data.

2. The data satis�es GARP.

3. There exists a non-satiated, continuous, concave and monotone utility

function that rationalizes the data.

Proof. See Afriat (1967); Diewert (1973); Varian (1982); Teo and Vohra (2003);

Fostel et al. (2004); Geanakoplos (2013).

2.2 Bounding the Indi�erence Curve

Assume that D satis�es GARP. The following de�nitions follow Varian (1982).

De�nition 4. Pu (x) ≡ {x′ : u (x′) > u (x)} is the strictly upper contour set

of a bundle x ∈ <K+ given a utility function u(x).

Next, Varian (1982) de�nes, for a given unobserved bundle x, the set of

normalized prices at which x may be chosen such that the augmented data set

still satis�es GARP.

De�nition 5. Suppose x ∈ <K+ is an unobserved bundle, then

S (x) = {p |{(p, x)} ∪D satis�es GARP and px = 1}

Varian (1982) notes (p. 950) that Afriat's theorem implies that S (x) is

nonempty for all x ∈ <K+ since there exists a concave utility function that

rationalizes the data and therefore there exists a supporting price p for every

x. For every unobserved bundle x, Varian (1982) employs S (x) to construct

lower and upper bounds on the strictly upper contour set through x, using the

following de�nitions.
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De�nition 6. For every unobserved bundle x ∈ <K+ :

1. The revealed worse set is RW (x) ≡
{
x′
∣∣∀p ∈ S(x), xPD∪{p,x}x

′}.
2. The not revealed worse set, denoted by NRW (x), is the complement of

RW (x).

3. The revealed preferred set is RP (x) ≡
{
x′
∣∣∀p ∈ S(x′), x′PD∪{p,x′}x

}
.1

In Fact 5, Varian (1982, page 953) states: �let u(x) be any utility func-

tion that rationalizes the data. Then for all (unobserved bundles - HPZ)

x, RP (x) ⊂ Pu(x) ⊂ NRW (x)�. This may be understood as if given a data

set that satis�es GARP and a utility function that rationalizes these data,

every indi�erence curve through a given unobserved bundle must be bounded

between the revealed worse set and the revealed preferred set of this bundle.

In the following section we provide two counter-examples.

3 Two Counter Examples

3.1 Textbook Example

Assume the DM's non-convex preferences are represented by the utility func-

tion

u(x, y) =

 x3y if x ≥ y

xy3 if x < y
(3.1)

Denote the price of the �rst good by px, the price of the second good by py and

the DM's income by I.2 Suppose that the DM faces two problems - one where

1Denote by CM(D,x) the convex hull of all the bundles that are revealed preferred to x
by D or weakly monotonically greater than bundles that are revealed preferred to x by D.
Varian (1982) proves that CM(D,x) is a subset of RP (x) while Knoblauch (1992) shows
that RP (x) is a subset of the closure of CM(D,x).

2

(x, y)d(px, py, I) =


( I
4px

, 3I
4py

) if px

py
> 1{

( I
4px

, 3I
4py

), ( 3I
4px

, I
4py

)
}

if px

py
= 1

( 3I
4px

, I
4py

) if px

py
< 1

.
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Figure 3.1: Textbook example

the prices are (p1x, p
1
y) = (1, 1.13) and I = 80 and the other where the prices

are (p2x, p
2
y) = (1.13, 1) and I = 80. Figure 3.1 illustrates the two problems,

the DM's optimal choices (bundles A and B, respectively) and the indi�erence

curve that passes through those bundles (the smooth curve through bundles

A and B).

Naturally, u(x, y) rationalizes the data. Therefore, Afriat's theorem guar-

antees that these choices can be rationalized by a continuous, monotone and

concave utility function, although the choices were generated by non-convex

preferences. Figure 3.1 demonstrates that the utility function v(x, y) =

x0.9 + y0.9 (which is concave and nicely behaved) can rationalize the DM's

choices (the dashed curve through bundles A and B).3 However, u and v may

3In fact, this function even preserves the DM's (unobserved) indi�erence between the
two chosen bundles.

6



rank bundles di�erently. Consider, for example, the bundle C = (44, 44) in

Figure 3.1, which is ranked lower than the chosen bundles by the DM's pref-

erences, but higher than the chosen bundles by the nicely behaved utility

function.

Moreover, consider the revealed preferred set for the unobserved bundle

D = (26, 55) in Figure 3.1. As seen in the �gure, C ∈ RP (D). Indeed, by the

nicely behaved function v, Bundle D is ranked below the two observed bundles

while Bundle C is ranked above them. In fact, every nicely behaved (continu-

ous, concave and monotone) utility function that rationalizes the DM's choices

ranks Bundle D below Bundle C. However, by the DM's non-convex prefer-

ences, represented by u, Bundle C lies strictly below the indi�erence curve that

goes through Bundle D, thus violating Varian's Fact 5. As a consequence, an

outside observer (e.g. �rm, researcher) who relies on Varian's method will

reach a wrong conclusion when predicting a pairwise choice between bundles

C and D.

3.2 Non-Expected Utility

Suppose a DM has to decide how to allocate a wealth of 1 between consumption

in two mutually exclusive, exhaustive and equally probable states of the world.

The allocation is attained by holding a portfolio of Arrow securities with unit

prices p = (p1, p2). Figure 3.2 presents a data set D of two observations.

Portfolio x1 = (0.124, 2.222) is chosen when prices are p1 = (0.450, 0.425),

and portfolio x2 = (3.850, 0.094) is chosen when prices are p2 = (0.250, 0.400).

Notice that since p2 < p1, every portfolio that is feasible under p1 is also feasible

when prices are p2, therefore x2R0
Dx

1. Now consider two unobserved portfolios

A = (0.390, 1.806) and B = (1.390, 1.390). Portfolio A is feasible under both

prices, but portfolio B is feasible only under p2. The revealed preferred set of A

and the revealed worse set of B are drawn in panels 3.2a and 3.2b, respectively.

Now consider the following utility function over portfolio x = (x1, x2) :

u(x1, x2) =
√

max {x1, x2}+
1

4

√
min {x1, x2} (3.2)
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Figure 3.2: Violations of Fact 5

which represents the preferences of an elation seeking DM (Gul, 1991) with

β = −0.75 and a CRRA utility index with ρ = 0.5 over Arrow securities.4

Therefore, the DM's preferences are not convex and u (·) is not quasi-concave
(let alone not concave). The indi�erence curves drawn in Figure 3.2 through

x1 and x2 demonstrate that this utility function rationalizes the data.

Figure 3.2a clearly demonstrates that while B ∈ RP (A), it is not true that
B ∈ Pu(A). Similarly, Figure 3.2b shows that while A ∈ Pu(B) it is not true

that A ∈ NRW (B). That is, the ranking of unobserved portfolios implied by

the revealed preferred and revealed worse sets is inconsistent with the ranking

of portfolios induced by a utility function that rationalizes the data. Again, an

outside observer who relies on Varian's method will reach a wrong conclusion

4

(x, y)d(p1, p2) =


( p2

16p2
1+p1p2

, 16p1

16p1p2+p2
2
) if p1

p2
< 1{

( p2

16p2
1+p1p2

, 16p1

16p1p2+p2
2
), ( 16p1

16p1p2+p2
2
, p2

16p2
1+p1p2

)
}

if p1

p2
= 1

( 16p1

16p1p2+p2
2
, p2

16p2
1+p1p2

) if p1

p2
> 1

.
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when predicting a pairwise choice between portfolios A and B.

4 Discussion

4.1 The Technical Issue

Both examples suggest the source of the above inconsistency with Varian's

Fact 5. The failure of the non-parametric bounds can be traced back to the

construction of the revealed preferred and revealed worse sets. Since by Afriat's

Theorem if the data satis�es GARP there exists a concave utility function that

rationalizes it, S (x) (De�nition 5) is non-empty for every x. However, there

may exist a utility function that rationalizes the data for which there is no price

vector p that supports x as an optimal choice. Therefore, even if x′ is such that

xPD∪{p,x}x
′ for every p ∈ S (x), it does not imply that a utility function that

never chooses x ranks x above x′. In Figure 3.2a, for example, BPD∪{p,B}A for

every p ∈ S (B) , however the utility function that generated the DM's choices

never chooses B and therefore may rank B below A.5 Hence, Fact 5 fails since

Varian's non-parametric bounds are constructed assuming that every bundle

can be observed given some prices, while when the preferences are non-convex,

some bundles are never chosen.

4.2 Implications

In many environments non-convex preferences are crucial and prevalent (e.g.

risk, ambiguity and other-regarding preferences). The examples above demon-

strate that when constructing non-parametric bounds through the method

suggested in Varian (1982), the assumption of convexity of preferences is im-

plicitly invoked. In particular, prediction and welfare analysis in contexts

5De�nitions 5 and 6 can be trivially extended to include observed bundles, and then
a similar argument can be constructed for the observed portfolio x1 in Figure 3.2a. Note
that the violation of the revealed worse set demonstrated in Figure 3.2b cannot occur for an
observed bundle since there exists a price vector p that supports the bundle as an optimal
choice. In fact, it is easy to show that u(x) rationalizes D if and only if for every observed
bundle xi, Pu(x

i) ⊂ NRW (xi).
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where non-convex preferences are frequently identi�ed may su�er from the

implementation of this method. In such cases, the convexi�cation of the indif-

ference curve may lead to a wrong prediction of behavior and therefore to an

erroneous counterfactual analysis.

Both examples clearly demonstrate this issue. In these cases, every set

of convex preferences that is consistent with the DM's choices, ranks some

unsupportable (with respect to the true preferences) bundle higher than some

other unobserved bundle. Therefore, a welfare or prediction analysis that is

based on the non-parametric bounds may erroneously rank the two bundles,

compared to the actual, non-convex, preferences held by the DM.

The identi�cation of non-convex preferences becomes therefore a crucial

step for non-parametric welfare analysis. Afriat theorem guarantees that such

preferences cannot be identi�ed by choices from linear budget lines. There-

fore, more general menus (e.g. pairwise comparisons as in Halevy et al. (2016),

see also Forges and Minelli (2009); Heufer (2012)) must be employed in order

to identify the extent of potential non-convexities before proceeding to wel-

fare analysis that is based on non-parametric bounds assuming the DM holds

convex preferences.

An alternative approach may be to construct bounds using weaker assump-

tions on the true preferences. While these bounds would be looser, they will

provide more reliable predictions and welfare analysis. In the following sec-

tion we suggest one such alternative which is based only on the assumption of

monotonicity of preferences.6

5 Alternative Bounds

5.1 Preliminaries

The preferences of a DM are considered (strictly) monotonic if every bundle

is ranked (strictly) lower than all the bundles that include (strictly) greater

6Local non satiation is too weak an assumption to be used for the construction of
bounds on the indi�erence curves since it provides information only on the existence of a
better bundle, but not on its properties (e.g. direction).

10



quantities in each element.

De�nition 7. A bundle x ∈ <K+ is

1. monotonically preferred to a bundle y ∈ <K+ , denoted xMy, if ∀i ∈
{1, . . . , K} : xi ≥ yi.

2. strictly monotonically preferred to a bundle y ∈ <K+ , denoted xSMy, if

∀i ∈ {1, . . . , K} : xi > yi.

In the context of goods, an observer evaluates a bundle x to be better than

another bundle y, either because x is observed as preferred to y, or x is mono-

tonically preferred to y or a combination of these two through other bundles.

The monotonically revealed preference relations formalize this idea.

De�nition 8. Let D =
{
(pi, xi)

n
i=1

}
. A bundle x ∈ <K+ is7

1. directly monotonically revealed preferred to a bundle y ∈ <K+ , denoted
xMR0

Dy, if xMy or xR0
Dy.

2. strictly directly monotonically revealed preferred to a bundle y ∈ <K+ ,
denoted xSMP 0

Dy, if xSMy or xP 0
Dy.

3. monotonically revealed preferred to a bundle y ∈ <K+ , denoted xMRDy,

if there exists a sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

xMR0
Dx

j, xjR0
Dx

k, . . . , xmR0
Dy.

8

4. strictly monotonically revealed preferred to a bundle y ∈ <K+ , denoted
xSMPDy, if there exists a sequence of observed bundles

(
xj, xk, . . . , xm

)
such that xMR0

Dx
j, xjR0

Dx
k, . . . , xmR0

Dy and at least one of them is

strict.

7Heufer (2012) and Korenok et al. (2013) de�ne similar relations. Both go on to de�ne
an equivalent to GARP (M-GARP in Heufer (2012) and Monotonic Consistency in Korenok
et al. (2013)). Heufer (2012) is interested in characterizing the equivalent to the revealed
preferred set while Korenok et al. (2013) are concerned with the existence of a rationalizing
utility function.

8Note that if xi is an observed bundle then xiMz =⇒ xiR0
Dz, so MRD is the transitive

closure of MR0
D.
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Lemma 1. Let D =
{
(pi, xi)

n
i=1

}
be a data set of choices from linear bud-

get lines that satis�es GARP. Let u(·) be a monotonic utility function that

rationalizes the data. Then, xSMPDy implies u(x) > u(y).

Proof. See Appendix A.

5.2 An Alternative Fact 5

For every bundle x, we use the monotonically revealed preference relations to

construct lower and upper bounds on the strictly upper contour set through

x, using the following sets.

De�nition 9. For every bundle x ∈ <K+ :

1. The monotonically revealed worse set is MRW (x) ≡ {y |xSMPDy}.

2. The not monotonically revealed worse set, denoted by NMRW (x), is the

complement of MRW (x).

3. The monotonically revealed preferred set is MRP (x) ≡ {y |ySMPDx}.

The equivalent to Varian (1982) Fact 5, using only the monotonicity of pref-

erences assumption is

Proposition 1. Let D =
{
(pi, xi)

n
i=1

}
be a data set of choices from linear bud-

get lines that satis�es GARP. Let u(·) be a monotonic utility function that ra-

tionalizes the data. Then for all bundles x, MRP (x) ⊆ Pu(x) ⊆ NMRW (x).9

Proof. Suppose x̂ ∈ MRP (x). Then, x̂SMPDx. By Lemma 1 u(x̂) > u(x).

Therefore, by De�nition 4, x̂ ∈ Pu(x). Hence, MRP (x) ⊆ Pu(x).

Next, suppose x̂ ∈ MRW (x). Therefore, xSMPDx̂. By Lemma 1 u(x) >

u(x̂). Therefore, by De�nition 4, x̂ /∈ Pu(x). Hence, Pu(x) ∩MRW (x) = ∅.
Thus, Pu(x) ⊆ NMRW (x).

9Proposition 4.3 in Heufer (2012) implies that MRP (x) is the tightest inner bound for
the strictly upper contour set through the bundle x.
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Figure 5.1: Textbook example revisited

5.3 The Examples Revisited

5.3.1 Textbook Example

In section 3.1 we considered a DM with a utility function described in (3.1).

We showed in Figure 3.1 that this DM prefers Bundle D over Bundle C,

although Bundle C was included in the revealed preferred set of Bundle D.

We claimed that this discrepancy results from the convexity of preferences

implicitly invoked by the construction suggested by Varian (1982).

Figure 5.1 demonstrates that by basing the construction of the non-

parametric bounds solely on the monotonicity of preferences assumption, while

dropping the convexity of preferences assumption, one may avoid such dis-

crepancies. The dark gray area in Figure 5.1 designates the Monotonically

Revealed Preferred set while the light gray shows the original Revealed Pre-
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Figure 5.2: Fact 5 revisited

ferred set. It is clear that using the alternative construction Bundle C no

longer belongs to the set of bundles that are classi�ed as preferred to D. Prac-

tically, this implies that in case of a pairwise choice between bundles C and

D, an observer would no longer predict Bundle C to be chosen over Bundle

D.10

5.3.2 Non-Expected Utility

In Section 3.2 we described an elation seeking DM that allocates her wealth

between consumption in two mutually exclusive, exhaustive and equally proba-

ble states of the world. Figure 3.2 demonstrated that using Varian (1982) Fact

5, the safe Bundle B was included in the revealed preferred set constructed

for the risky Bundle A (and Bundle A was a member of the revealed worse set

10If x is an unobserved bundle and there exists at least one observed bundle xi that
is directly revealed preferred to x but does not monotonically dominate x, then there are
bundles that will be ranked above x using the convexity bound but are incomparable to x
using the monotone bounds.
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constructed for Bundle B).

Figure 5.2 depicts the monotonically revealed preferred set of Bundle A

and the monotonically revealed worse set of Bundle B using the alternative

bounds that assume only the monotonicity of preferences (again, the dark

gray area designates the alternative sets while the light gray shows the orig-

inal sets). These bounds suggest that the observed choices do not provide

enough information to separate bundles A and B. In fact, there is not enough

information to compare the risky Bundle A with any safe bundle that is not

monotonically better. Hence, an observer using this alternative cannot rule

out an elation seeking behavior that induces a preference for Bundle A over

seemingly attractive safe bundles.

6 Conclusions

In this short paper we draw attention to the assumption of convexity of pref-

erences implicitly invoked in the construction of non-parametric bounds on

indi�erence curves as suggested by Varian (1982). We then suggest a similar

construction that refrains from using the assumption of convexity of prefer-

ences and is based solely on the premise that in the context of goods, an

observer evaluates a bundle x to be better than another bundle y, either be-

cause x is observed to be preferred to y, or x monotonically dominates y or a

combination of these two.

As demonstrated in �gures 5.1 and 5.2 the assumption of monotonicity of

preferences is also included implicitly in the original construction. Therefore

the alternative construction provides revealed preferred and revealed worse

sets that are subsets of the original sets. Hence, the price of the more reliable

bounds obtained by dropping the assumption of convexity of preferences is less

predictive power and weaker ability to provide conclusive welfare analysis.
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A Proof of Lemma 1

De�nition 10. A utility function u : <K+→ < is

1. Locally non satiated if ∀x ∈ <K+ and ∀ε > 0, ∃y ∈ Bε (x)∩<K+ such that

u(x) < u(y).

2. Monotone if xMy implies u(x) ≥ u(y) and xSMy implies u(x) > u(y).

Lemma 2. If u(·) is a locally non satiated utility function that rationalizes

D =
{
(pi, xi)

n
i=1

}
, then xiP 0

Dx implies u (xi) > u (x).

Proof. If xiP 0
Dx then x

iR0
Dx. Since u (·) rationalizes D, by De�nition 3, xiR0

Dx

implies u (xi) ≥ u (x). Suppose that u (xi) = u (x). Since pixi > pix, ∃ε > 0

such that ∀y ∈ Bε (x) : p
ixi > piy. By local non satiation ∃y′ ∈ Bε (x) such

that u (y′) > u (x) = u (xi). Thus, y′ is a bundle such that pixi > piy′ and

u (y′) > u (xi), in contradiction to u (·) rationalizing D. Therefore, u (xi) >

u (x).

Now, we are ready to prove Lemma 1: Let D =
{(

pi,xi
)n
i=1

}
be a data

set of choices from linear budget lines that satis�es GARP. Let u(·)
be a monotonic utility function that rationalizes the data. Then,

xSMPDy implies u(x) > u(y).

Proof. Suppose xSMPDy. Hence, by De�nition 8.4, there exists a sequence

of observed bundles
(
xj, xk, . . . , xm

)
such that xMR0

Dx
j, xjR0

Dx
k, . . . , xmR0

Dy

and at least one of them is strict.

If xMR0
Dx

j is strict then xSMP 0
Dx

j, that is: xSMy or xP 0
Dy. Since u(·)

is monotone and rationalizes D then by De�nition 10.2 and Lemma 2 u(x) >

u(xj). In addition, since u(·) rationalizes D, u(xj) ≥ u(xk), . . . , u(xm) ≥ u(y).

Thus, there exists a sequence of observed bundles
(
xj, xk, . . . , xm

)
such that

u(x) > u(xj), u(xj) ≥ u(xk), . . . , u(xm) ≥ u(y). Therefore, u(x) > u(y).

Otherwise, xMR0
Dx

j implies xMy or xR0
Dy. Since u(·) is monotone and

rationalizesD then u(x) ≥ u(xj). But then at least one of xjR0
Dx

k, . . . , xmR0
Dy

is strict. Thus, by Lemma 2, u(xj) ≥ u(xk), . . . , u(xm) ≥ u(y) such that at

least one of the inequalities is strict, which implies that u(x) > u(y).
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