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The Relation between Behavior under Risk and over Time†

By Anujit Chakraborty, Yoram Halevy, and Kota Saito*

The paper establishes a tight relation between  nonstandard 
behaviors in the domains of risk and time, by considering a deci-
sion-maker with  non-expected utility preferences who believes that 
only present consumption is certain while any future consump-
tion is uncertain. We provide the first complete characterizations 
of the  two-way relations between the certainty effect and  present 
bias, and between the  common ratio effect and temporal reversals.  
(JEL D11, D15, D81, D91)

This paper studies if and how behaviors in the domains of risk and time may be 
similar and related. This similarity is evident in the mutually mirroring mathemat-
ical models used for the analysis of behavior under risk and over time. The work-
horse model of intertemporal choice, exponential discounting, evaluates the utility 
of a consumption stream by additively aggregating the utility of each consumption 
outcome, after exponentially weighting it by the associated  time-delay. The canoni-
cal model for choice under risk, expected utility, similarly calculates the utility of a 
lottery by aggregating the utility of each possible outcome after weighting it by its 
respective probability. Further, these normative mathematical models contain simi-
lar descriptive inadequacies:

• Preferences are disproportionately sensitive to certainty (certainty effect) in the 
risk domain and to the present ( present bias) in the time domain.

• Proportional changes in probabilities ( common ratio effect) or the introduction 
of equal time delays (temporal reversals) affect the preferences between two 
alternatives disproportionately.1

1 Certainty effect and  present bias are often taken as special cases of  common ratio effect and temporal reversals, 
respectively.
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Moreover, Keren and Roelofsma (1995) and Weber and Chapman (2005) provide 
experimental evidence that introducing explicit risk to immediate rewards almost 
eliminates  present bias, while introducing delay to sure outcomes almost elimi-
nates the certainty effect. These parallels are well accepted in the literature (Green 
and Myerson 2004, Chapman and Weber 2006), and there is an implicit understand-
ing that the existence of such mirroring behaviors is not a mere coincidence but 
points to a common fundamental property of decision-making that manifests itself 
across domains of behavior (Prelec and Loewenstein 1991, Baucells and Heukamp 
2012). For example, a delayed reward or consumption could be inherently risky as 
there might be events between the current date and the promised date that interfere 
in the process of acquiring the reward (Halevy 2008). This would explain why risk 
preferences could manifest in intertemporal choice patterns. Rachlin et al. (1986) 
and Rachlin, Brown, and Cross (2000) suggested the opposite direction; if the utility 
of probabilistic rewards were calculated using mean waiting time before a success-
ful draw of the corresponding reward, then time preferences could be used to derive 
preferences over the probabilistic rewards. The current paper formalizes these intu-
itions and provides a  two-way characterization of how prominent behavioral traits 
from the domains of risk and time could be related. We prove our results in two 
commonly used decision domains: one where the decision-maker (DM) is choosing 
between temporal rewards ( X ×  ℝ +   ) with the set of time periods being the set of 
all  nonnegative numbers and the consumption set is a subset  X  of   ℝ +    and another 
where the DM is choosing from the space of consumption streams (  X   ℕ  , where  ℕ  are 
 nonnegative integers).

Section I introduces some of the basic concepts from Halevy (2008). Sections II 
and III provide the relevant definitions from the domains of risk and intertempo-
ral behavior, respectively. In Section  IV, we state and prove our main results. The 
 counterexample that shows the incompleteness of characterization results in the previ-
ous literature (described in Table 2) is included in online Appendix A.

I. Background

The idea that Diminishing Impatience ( present bias or  quasi-hyperbolic dis-
counting) may be related to the certainty of the present and the risk associated with 
future rewards, was formalized by Halevy (2008) in the domain of preferences over 
consumption streams. In this model, every consumption path  𝐜 =  ( c 0  ,  c 1  ,  c 2  , …)   
is subject to some constant hazard rate  r  of termination, with only the first period 
of consumption (at  t = 0 ) being certain. The DM chooses as if he has the follow-
ing utility function over consumption paths: he calculates present discounted utility 
for every possible length of the path (all periods before termination of consump-
tion). The distribution over present discounted utilities is then evaluated using Rank 
Dependent Utility (RDU, see Remark 1) with probability weighting function  g ( · )  . 
The DM’s preferences over consumption streams, for any particular  r ∈  (0, 1) ,  is 
represented by

(1)  U (𝐜, r)  =   ∑ 
t=0

  
∞

    g (  (1 − r)    t )   δ   t  u ( c t  ) , 



3CHAKRABORTY ET AL.: BEHAVIOR UNDER RISK AND OVER TIMEVOL. 2 NO. 1

where  δ  is a constant pure time preference parameter and  u ( · )   is the felicity func-
tion. Given the representation (1), the composite discount function at period  t  is

(2)  D (t)  =  δ   t  g (  (1 − r)    t ) . 

The DM’s impatience at time  t  is the ratio of her composite discount functions at 
periods  t  and  t + 1 . Halevy (2008) defines Diminishing Impatience as the property 
of “impatience being maximized at  t = 0 .”

II. Risky Behavior

In this section, we consider a monotone (with respect to  first-order stochastic 
dominance) risk preference   ≿   r   on the set of binary lotteries:

  Δ =  { (x, p)   |   x ∈ X and p ∈  [0, 1] } , 

where  X  is a  non-degenerate closed interval in   ℝ +    including  0 , and   (x, p)   is a lottery 
that pays  x  with probability  p  and  0  with probability  1 − p . We denote the symmetric 
and the asymmetric parts by   ∼   r   and   ≻   r  , respectively.

Suppose the subject chooses between a safer option which pays  x  with proba-
bility  η , and a riskier option which provides a larger gain  y  with probability  ημ , 
where  μ < 1 . A subject who exhibits the  common ratio effect switches his choice, 
as  η  falls, from the safer to the riskier option. Formally, we have the following.

DEFINITION 1:   ≿   r   is said to exhibit

 (i) Strict  Common Ratio Effect2 if, for any  x, y ∈ X ,  μ,  η ̃   ∈  (0, 1]   such 
that  x < y  and   (x,  η ̃  )   ∼   r   (y,  η ̃  μ)  :

 (3a)   (x, η)   ≺   r   (y, ημ)  for all η ∈ (0,  η ̃  ) ,

 (3b)   (x, η)   ≻   r   (y, ημ)  for all η ∈ ( η ̃  , 1] .

 (ii) Weak  Common Ratio Effect if the conclusion in equation (3) holds with 
weak preferences and there exist some  x, y  and  μ,  η ̃  , η  such that the conclusion 
in equation (3) holds (with strict preferences).

The general definition provided by Machina (1982) is equivalent to the above 
definition within the set of binary lotteries. Certainty effect is a special case of the 
 common ratio effect, when   η ̃   = 1 .

DEFINITION 2:   ≿   r   is said to exhibit

2 Under the standard axioms of monotonicity and continuity, for any  x, y ∈ X  and   η ̃   ∈  [0, 1]  , there exists  μ  such 
that   (x,  η ̃  )   ∼   r   (y,  η ̃  μ)  . So the condition cannot be satisfied in a trivial way.
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 (i) Strict Certainty Effect if, for any  x, y ∈ X  and  μ ∈  [0, 1)   such that  x < y ,

 (4)   (x, 1)   ∼   r   (y, μ)  ⇒  (x, η)   ≺   r   (y, ημ)   for all η ∈  (0, 1) . 

 (ii) Weak Certainty Effect if the conclusion of equation (4) holds with weak pref-
erences and there exist some  x, y  and  μ, η  such that the conclusion of equation 
(4) holds (with strict preferences).

Finally, in the set of binary lotteries, the Independence Axiom reduces to the 
following definition.

DEFINITION 3:   ≿   r   satisfies the Independence Axiom if, for any  x, y ∈ X  
and  μ, η, η′ ∈  (0, 1]  ,

   (x, η)   ≿   r   (y, ημ)  ⇔  (x, η′)   ≿   r   (y, η′μ) . 

REMARK 1: Assume the DM’s preferences over binary lotteries are represented 
by Rank Dependent Utility (RDU),  U (x, p)  = u (x) g (p)   where  u ( · )   is a  real-valued 
increasing function on  X  and  g :  [0, 1]  →  [0, 1]   is a probability weighting function 
and for any  α ∈  ℝ +    there exist  x, y ∈ X  such that  α = u (y) /u (x)  . Then, the DM 
exhibits

 (i) Strict  Common Ratio Effect if and only if for all  p, q ∈  (0, 1)   and  ℓ ∈  (0, 1]  ,

 (5)    
g (ℓ) 
 _ 

g (pℓ)    >   
g (qℓ) 
 _ 

g (pqℓ)   . 

 (ii) Weak  Common Ratio Effect if and only if equation (5) holds with weak 
inequality and there exist  p, q, ℓ  for which equation (5) holds (with strict 
inequality).

 (iii) Strict Certainty Effect if and only if  p, q ∈  (0, 1)  ,

 (6)  g (pq)  > g (p) g (q) . 

 (iv) Weak Certainty Effect if and only if equation (6) holds with weak inequality 
and there exist  p, q  for which equation (6) holds (with strict inequality).

PROOF:
We show (i), (ii)–(iv) follow similarly. Assume equation (3) to show equation (5). 

Fix  p, q ∈  (0, 1) , ℓ ∈  (0, 1]  . By assumption, we can find  x, y  such that  u (y) /u (x)  
= g (ℓ) /g (ℓp)  . By equation (3),

    
g (ℓ) 
 _ 

g (ℓp)    =   
u (y) 
 _ 

u (x)    >   
g (η) 
 _ 

g (ηp)    for all η < ℓ. 

Let  η = qℓ . Then  η < ℓ  and  g (ℓ) /g (ℓp)  > g (qℓ) /g (pqℓ)  .



5CHAKRABORTY ET AL.: BEHAVIOR UNDER RISK AND OVER TIMEVOL. 2 NO. 1

To show the converse, fix  x, y, μ,  η ̃    such that   (x,  η ̃  )   ∼   r   (y,  η ̃  μ)  . Then  g ( η ̃  ) /g ( η ̃  μ)   
= u (y) /u (x)  . For equation (3a), fix  η <  η ̃   . Let  ℓ ≔  η ̃  , p ≔ μ, q ≔ η/ η ̃   . Then  q < 1  
and

    
g (ℓ) 
 _ 

g (pℓ)    >   
g (qℓ) 
 _ 

g (pqℓ)    ⇒   
u (y) 
 _ 

u (x)    =   
g ( η ̃  ) 
 _ 

g ( η ̃  μ)    >   
g (η) 
 _ 

g (ημ)    ⇒ u (x) g (η)  < u (y) g (ημ) , 

or   (x, η)   ≺   r   (y, ημ)  . To show equation (3b) fix  η  such that  η >  η ̃   . The result follows 
by letting  q ≔  η ̃   / η, p ≔ μ, ℓ ≔ η . Then  q < 1  and

    
g (ℓ) 
 _ 

g (pℓ)    >   
g (qℓ) 
 _ 

g (pqℓ)    ⇒   
g (η) 
 _ 

g (ημ)    >   
g ( η ̃  ) 
 _ 

g ( η ̃  μ)    =   
u (y) 
 _ 

u (x)    ⇒ u (x) g (η)  > u (y) g (ημ) , 

or   (x, η)   ≻   r   (y, ημ)  . ∎

III. Intertemporal Behavior

In this section, we define preferences that subsume the classes of exponential, 
hyperbolic and  quasi-hyperbolic discounting. We denote the set of time periods 
by  T . We consider two cases: when preferences are defined over temporal rewards 
( X × T  when  T =  ℝ +   ), and over consumption streams (  X   T   when  T = ℕ ).

A. Temporal Rewards in Continuous Time

Preferences are defined over pairs of prospects, where each prospect consists of a 
reward  x ∈ X  at time  t ∈ T =  ℝ +   . For each  d ∈ T , we denote the set of temporal 
rewards, paid after time  d , by  X (d)  =  { [x, t]   |   x ∈ X and t ∈ T such that t ≥ d}  . 
The DM’s  time-indexed preferences are given by    { ≿ d  }  d∈T   , where   ≿ d    is a binary rela-
tion on  X (d)   for each decision time  d ∈ T .3

Hyperbolic discounting implies the following pattern of dynamic choice: the DM 
chooses a  later larger reward over an  earlier smaller reward, but reverses his choice 
as both reward dates approach the decision date.4 Temporal Reversal formalizes this 
behavioral pattern as follows.5

DEFINITION 4:    { ≿ d  }  d∈T    is said to exhibit

 (i) Temporal Reversal if, for any  x, y ∈ X  and   d ̃  , t, s ∈ T  such that  x < y ,   d ̃    
≤ t < s , and   [x, t]   ∼  d ̃      [y, s]  :

 (7a)   [x, t]      ≺ d      [y, s]  for all d such that d <  d ̃  ,

3 For each  d ∈ T , we denote the symmetric and the asymmetric parts of   ≿ d    by   ∼ d    and   ≻ d   , respectively.
4 In the following three definitions of time preferences, we focus on rewards that provide positive utility, for 

simplicity. For the case of rewards that could provide  disutility instead (effort, for example),  present bias appears 
as procrastination and is defined in the same way by switching strict preference from  ≻  to  ≺ , and vice versa. 
O’Donoghue and Rabin (1999) offer examples of procrastination and Halevy (2008) discusses how to incorporate 
into the current framework using the reflection effect.

5 Similar to Proposition 1 in Dasgupta and Maskin (2005). 
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 (7b)   [x, t]      ≻ d      [y, s]  for all d such that  d ̃   < d < t.

 (ii)  Present-Biased Temporal Reversal if, for any  x, y ∈ X  and  t, s ∈ T  such 
that  x < y  and  t < s ,

   [x, t]   ∼ t    [y, s]  ⇒  [x, t]   ≺ d    [y, s]  for all d < t. 

 (iii) Temporally Unbiased if, for any  x, y ∈ X  and  d, d′, s, t ∈  ℝ +   ,

   [x, t]   ≿ d    [y, s]  ⇔  [x, t]   ≿ d′    [y, s] . 

 Present-Biased Temporal Reversal is a special case of Temporal Reversal when   
d ̃   = t . Temporally Unbiased preferences are time consistent.

B. Consumption Streams in Discrete Time

We now consider consumption streams in discrete time (i.e.,  T = ℕ ). In this case, 
temporal behavior is usually characterized by properties of the  discount-function, 
and under time-invariance it depends only on the distance between the evaluation 
time and consumption time. Let  D ( · )   be the DM’s discount function, so the utility of 
consuming  x  after  τ  periods is  D (τ) u (x)  , where  u  is a  real-valued function on  X . The 
function  D  exhibits hyperbolic discounting if  D (τ)  = 1/ (1 + ρτ)   for some  ρ > 0 ; 
 quasi-hyperbolic discounting if  D (0)  = 1  and  D (τ)  = β  δ   τ   for some  δ ∈  (0, 1]   
and  β < 1  for all  τ ≥ 1 .

The DM’s (one period) impatience at  t  is  D (t) /D (t + 1)  . DM’s ( k  period) impa-
tience at  t  is  D (t) /D (t + k)  . In Table 1 we define the notions of temporal behavior for 
streams (  X   ℕ  ).

PROPOSITION 1: 

 (i) Delay Independent Diminishing Impatience implies Diminishing Impatience 
(but not the converse).

 (ii) Strongly Diminishing Impatience and Delay Independent Strongly 
Diminishing Impatience are equivalent.

PROOF:
(i) Take  k = 1 . An implication of the  counterexample provided in online 

Appendix A is that Diminishing Impatience does not imply Delay Independent 
Diminishing Impatience.

(ii) Delay Independent Strongly Diminishing Impatience trivially implies 
Strongly Diminishing Impatience. To show the converse fix  k, t′, t  such that  t′ > t  to 
show that  D (t) /D (t + k)  > D (t′) /D (t′ + k)  . Notice that

    
D (t) 
 _ 

D (t + k)    =     
D (t) 
 _ 

D (t + 1)      
D (t + 1) 
 _ 

D (t + 2)    ⋯   
D (t + k − 1) 

  _ 
D (t + k)       



    

k terms

    =   ∏ 
d=0

  
k−1

      
D (t + d) 
 _  

D (t + d + 1)   , 
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D (t′) 

 _______ 
D (t′ + k) 

   =     
D (t′) 

 _______ 
D (t′ + 1) 

     
D (t′ + 1) 

 _______ 
D (t′ + 2) 

   ⋯   
D (t′ + k − 1) 

  __________  
D (t′ + k) 

     


    

k terms

    =   ∏ 
d=0

  
k−1

      
D (t′ + d) 

 __________  
D (t′ + d + 1) 

  . 

Since  t′ > t , by Strongly Diminishing Impatience, we have for each 
 d ∈  {0, …, k − 1}  ,  D (t + d) /D (t + d + 1)  > D (t′ + d) /D (t′ + d + 1)  . Hence, 
 D (t) /D (t + k)  > D (t′) /D (t′ + k)  . ∎

Diminishing Impatience and Strongly Diminishing Impatience have been pro-
posed by Halevy (2008). Delay Independent Diminishing Impatience and Delay 
Independent Strongly Diminishing Impatience are new properties motivated by 
the hyperbolic discounting and the  quasi-hyperbolic discounting models (see 
Proposition 2), and they describe the failure of stationarity independently of the 
delay under consideration. Delay Independent Diminishing Impatience requires 
impatience to diminish for all possible delays ( k ≥ 1 ), hence is a strengthening of 
Diminishing Impatience.

PROPOSITION 2:

 (i) Quasi-hyperbolic discounting satisfies Delay Independent Diminishing 
Impatience but not Delay Independent Strongly Diminishing Impatience.

 (ii) Hyperbolic discounting satisfies Delay Independent Strongly Diminishing 
Impatience (and hence Strongly Diminishing Impatience and Delay 
Independent Diminishing Impatience).

PROOF:

 (i) For  t′ > t > 0 ,

    
D (0) 
 _ 

D (k)    =   1 _ 
β δ   k 

   >   1 _ 
 δ   k 

   =   
D (t) 
 _ 

D (t + k)    =   
D (t′) 

 ________ 
D (t′ + k) 

   .

 (ii) For arbitrary  k , and  t′ > t ≥ 0 ,

    
D (t) 
 _ 

D (t + k)    = 1 +   ρk
 _ 

1 + ρt
   > 1 +   ρk

 _____ 
1 + ρt′   =   

D (t′) 
 _______ 

D (t′ + k) 
   . ∎

Table 1—Notions of Temporal Behavior for Consumption Streams (  X   핅  )

Definition

Diminishing Impatience    
D(0) _____ 
D(1)    >    

D(t) ________ 
D(t + 1)    ∀t ∈   핅 +   

Delay Independent
   
D(0) _____ 
D(k)    >    

D(t) ________ 
D(t + k)     ∀k, t ∈   핅 +    Diminishing Impatience

Strongly Diminishing
   

D(t) ________ 
D(t + 1)    >    

D(t′ ) ________ 
D(t′ + 1)     ∀t, t′ ∈ 핅 with t < t′ Impatience

Delay Independent Strongly
   

D(t) ________ 
D(t + k)    >    

D(t′  ) _______ 
D(t′ + k)     ∀t, t′ ∈ 핅, k ∈   핅 +    with t < t′  Diminishing Impatience
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Finally, we elaborate on the relationship between the definitions for temporal 
rewards in continuous time (Definition 4) and the definitions for consumption 
streams in discrete time (definitions in Table 1). To achieve this we consider the 
intersection of their domains, which is temporal rewards in discrete time.

PROPOSITION 3: Suppose that  T = 핅  and there exist  D  :  T →  [0, 1]   and 
 u  :  X →  핉 +    such that for each  d ∈ T ,   ≿ d    is represented by   U d   ( [x, t] )   
= D (t − d) u (x)   and for any  α ∈  핉 +    there exist  x, y ∈ X  such that  α = u (x) /u (y)  .  
Then, the following results hold:

 (i)  D  exhibits Strongly Diminishing Impatience (and hence Delay Independent 
Strongly Diminishing Impatience) if and only if    { ≿ d  }  d∈T    exhibits Temporal 
Reversal.

 (ii)  D  exhibits Delay Independent Diminishing Impatience if and only if    { ≿ d  }  d∈T    
exhibits Present-Biased Temporal Reversal.

PROOF:
For this proof, we will use the result that Strongly Diminishing Impatience and 

Delay Independent Strongly Diminishing Impatience are equivalent. To show (i), 
suppose that   { ≿ d  }   exhibit Temporal Reversals and show that  D  exhibits Delay 
Independent Strongly Diminishing Impatience, i.e, for an arbitrary  nonnegative 
integer  τ′ < τ  we will show that

    
D (τ′)  _______ 

D (τ′ + k) 
   >   

D (τ) 
 _ 

D (τ + k)   . 

Choose  x, y ∈ X  such that  D (τ′) /D (τ′ + k)  = u (y) /u (x)  . Hence,   [x, τ]   ∼ τ−τ′   
[y, τ + k]  . Then by Temporal Reversals we have   [x, τ]   ≺ 0    [y, τ + k]  . This means that  
 D (τ) u (x)  < D (τ + k) u (y)  . It follows that,  D (τ′) /D (τ′ + k)  = u (y) /u (x)  > 
D (τ) /D (τ + k)  . Since the choice of  τ  is arbitrary, this means that  D  exhibits Strongly 
Diminishing Impatience.

For the converse direction, suppose that there exist  x, y ∈ X  and   d ̃  , t, s ∈ T  such 
that   [x, t]   ∼  d ̃      [y, s]   and   d ̃   ≤ t ≤ s . Choose  d, d′ ∈ T  such that  d <  d ̃    and  d′ >  d ̃    
to show   [x, t]   ≺ d    [y, s]   and   [x, t]   ≻ d′    [y, s]  .

Since   [x, t]   ∼  d ̃      [y, s]  , by definition,  D (t −  d ̃  ) u (x)  = D (s −  d ̃  ) u (y)  , so that

(8)    
D (t −  d ̃  ) 
 _ 

D (s −  d ̃  )    =   
u (y) 
 _ 

u (x)   . 

Since  d <  d ̃   < d′ , it follows from Delay Independent Strongly Diminishing 
Impatience that

    
D (t − d) 
 _ 

D (s − d)    <   
D (t −  d ̃  ) 
 _ 

D (s −  d ̃  )    <   
D (t −  d ′  ) 
 _ 

D (s −  d ′  )   . 

By equation (8), we get  D (t − d) u (x)  < D (s − d) u (y)   and  D (t − d′) u (x)   
> D (s − d′) u (y)  . Hence,   [x, t]   ≺ d    [y, s]   and   [x, t]   ≻ d′    [y, s]  .
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To show (ii) take  τ′ = 0  in the forward direction to get Delay Independent 
Diminishing Impatience from Present-Biased Temporal Reversal. Use  t =  d ̃    and 
consider  d <  d ̃    for the converse. ∎

IV. Results

A. Results for Temporal Rewards in Continuous Time

In this subsection, we assume  T =  ℝ +   . We assume that the DM’s temporal 
and risk preferences are connected in the following way: the individual discounts 
a future reward because he is uncertain whether he can consume it. We model this 
uncertainty through a stopping process that determines the last period until which 
rewards are available. Let  p (t)  =  e   −rt   be the probability that the DM may collect a 
reward at time  t , where  r ∈  (0, 1)   is the hazard rate.

At time  d , such that  0 ≤ d ≤ t , the DM updates the probability that a reward 
is available at time  t  according to the conditional probability:  p (t | d)  = p (t) /p (d)   
=  e   −r (t−d)   . Therefore, at time  d  he prefers receiving the temporal reward   [x, t]  , 
to another reward   [y, s]   if and only if his risk preferences rank the binary lottery  
  (x, p (t | d) )   (which pays  x  with probability  p (t | d)  ) over the lottery   (y, p (s | d) )  . Thus, 
the DM’s time preferences    { ≿ d  }  d∈T    for each decision time  d ∈ T  and risk prefer-
ences   ≿   r   are related as follows.

ASSUMPTION 1: For all  d ∈ T  and   [x, t] ,  [y, s]  ∈ X (d)  ,

(9)   [x, t]   ≿ d    [y, s]  ⇔  (x, p (t | d) )   ≿   r   (y, p (s | d) ) . 

Our formulation of  p (t)   implies that immediate rewards are certain, but as the 
promised date for future rewards becomes increasingly distant, the probability of 
receiving the reward exponentially decreases to zero. The additional property of  
 p (t | d)  = p (t | s) p (s | d)   would be very useful in the results that follow.

THEOREM 1: Under Assumption 1,

 (i)   ≿   r   exhibits Strict  Common Ratio Effect if and only if    { ≿ d  }  d∈T    exhibit  
Temporal Reversal.

 (ii)   ≿   r   exhibits Strict Certainty Effect if and only if    { ≿ d  }  d∈T    exhibit  
 Present-Biased Temporal Reversal.

 (iii)   ≿   r   satisfies the Independence Axiom if and only if    { ≿ d  }  d∈T    is Temporally 
Unbiased.

PROOF:
To prove (i), suppose that   ≿   r   exhibits (3a). Choose any  x, y ∈ X  and  

  d ̃  , t, s ∈ T  such that   [x, t]    ∼  d ̃      [y, s]   and   d ̃   ≤ t ≤ s . Then by definition,   (x, p (t |  d ̃  ) )   
 ∼   r   (y, p (s |  d ̃  ) )  =  (y, p (s | t) p (t |  d ̃  ) )  . Fix  d <  d ̃    to show   [x, t]   ≺ d    [y, s]  . Since  p  is 
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strictly decreasing,  p (d)  > p ( d ̃  )  , so that  p (t | d)  < p (t |  d ̃  )  . So (3a)  ⇒  (x, p (t | d) )   
 ≺   r   (y, p (s | t) p (t | d) )  =  (y, p (s | d) )  . Then by definition,   [x, t]   ≺ d    [y, s]  . So (7a) holds. 
In the same way, we can show that equation (3b) implies Temporal Reversal (7b).

To show the converse, suppose that   { ≿ d  }   exhibits (7a). Choose any  x, y ∈ X  
and  μ,  η ̃   ∈  [0, 1]   such that   (x,  η ̃  )   ∼   r   (y,  η ̃  μ)  . Fix  η ∈  (0,  η ̃  )   to show   (x, η)   ≺   r   (y, ημ)  . 
Since  p  is a strictly decreasing bijection to   [0, 1]  , there exist  t  and   d ̃    such that  t ≥  d ̃    
> 0  and  p (t)  = η  and  p ( d ̃  )  = η/ η ̃   . Then,  p (t |  d ̃  )  =  η ̃   . Also, there exists  s  such that  
 s ≥ t  and  p (s)  = μη . Then,  p (s | t)  = μ . Hence,   (x, p (t |  d ̃  ) )   ∼   r   (y, p (s | t) p (t |  d ̃  ) )   
=  (y, p (s |  d ̃  ) )  , so that   [x, t]   ∼  d ̃      [y, s]  , by definition. Therefore, by (7a),   [x, t]   
 ≺ 0    [y, s]  . So the definition shows that   (x, η)  =  (x, p (t) )   ≺   r   (y, p (s) )  =  (y, ημ)  . So 
(3a) holds. Similarly, we can show that equation (7b) implies equation (3b).

The proof of part (ii) is very similar to part (i) and is hence omitted.
To show (iii), suppose that   ≿   r   satisfies the Independence Axiom. Choose 

any  x, y ∈ X  and  t, s, d, d′ ∈ T  such that   [x, t]   ≿ d    [y, s]   to show   [x, t]   ≿ d′    [y, s]  . 
Since   [x, t]   ≿ d    [y, s]  , by definition   (x, p (t | d) )   ≿   r   (y, p (s | d) )  . Consider the case in 
which  d > d′ . By the Independence Axiom,   (x, p (t | d′) )  =  (x, p (t | d) p (d | d′) )   ≿   r  

(y, p (s | d) p (d | d′) )  =  (y, p (s | d′) )  . By the definition,   [x, t]   ≿ d′    [y, s]  . The proof for 
the other case in which  d′ > d  is similar.6

To show the converse, suppose that   { ≿ d  }   is Temporally Unbiased. Choose 
any  x, y ∈ X  and  μ, η, η′ ∈  [0, 1]   such that   (x, η)   ≿   r   (y, ημ)   to show   (x, η′)   ≿   r  
(y, η′μ)  . Consider the case where  η′ > η . Since  p  is strictly decreasing and bijection 
to   [0, 1]  , there exist  t, s, d ∈ T  such that  s ≥ t ,  p (t)  = η ,  p (s)  = ημ , and  p (d)   
= η/η′ . Then,  p (t | d)  = η′  and  p (s | d)  = η′μ . Since   { ≿ d  }   is Temporally Unbiased,   
(x, η)   ≿   r   (y, ημ)  ⇔  [x, t]   ≿ 0    [y, s]  ⇔  [x, t]   ≿ d    [y, s]  ⇔  (x, p (t | d) )   ≿   r   (y, p (s | d) )   
⇔  (x, η′)   ≿   r   (y, η′μ)  . The proof for the other case in which  η′ < η  is similar.7 ∎

The proof of Theorem 1 relies on the structural similarity between risky and 
intertemporal choices: a decrease in the risk is equivalent to the time of the reward 
and the decision time getting closer. Such a similarity had also been suggested by 
Prelec and Loewenstein (1991), although they did not provide a formal argument. 
The Probability Time Tradeoff axiom proposed by Baucells and Heukamp (2012) 
and used in Chakraborty (2016) to axiomatize preferences on a richer domain of 
intertemporal lotteries has a similar flavor.

6 Since   (x, p (t | d) )  =  (x, p (t | d′) p (d′ | d) )   ≿   r   (y, p (s | d′) p (d′ | d) )  =  (y, p (s | d) )  . Since   (x, p (t | d) )   ≿   r   
 (y, p (s | d) )  , by the Independence Axiom,   (x, p (t | d′) )   ≿   r   (y, p (s | d′) )  . Hence,   [x, t]   ≿ d′    [y, s]  .

7 Since  p  is strictly decreasing and bijection to   [0, 1]  , there exist  t, s, d ∈ T  such that  s ≥ t ,  p (t)  = η′ ,  
 p (s)  = η′μ , and  p (d)  = η′/η . Then,  p (t | d)  = η  and  p (s | d)  = ημ . Since   { ≿ d  }   is Temporally Unbiased,   (x, η)    
≿   r  (y, ημ)  ⇔  (x, p (t | d) )   ≿   r   (y, p (s | d) )  ⇔  [x, t]   ≿ d    [y, s]  ⇔  [x, t]   ≿ 0    [y, s]  ⇔  (x, p (t) )   ≿   r   (y, p (s) )   
⇔  (x, η′)   ≿   r   (y, η′μ)  .
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B. Results for Consumption Streams in Discrete Time

In this subsection, we use equation (2) and the definitions in Table 1 to derive 
the characterization of discounting behavior through properties of the weighting 
function  g ( · )  .

REMARK 2: Consider a DM represented by equation (1) with  g ( · )   continuous on   
(0, 1)  . Let  D (t)   be her composite discount function, as defined in equation (2).

 (i) Diminishing Impatience holds if and only if for every  r ∈  (0, 1)   and  t ∈  ℕ +   :

 (10)  g (  (1 − r)    t+1 )  > g ( (1 − r) ) g (  (1 − r)    t ) . 

 (ii) Delay Independent Diminishing Impatience holds if and only if for every  r ∈  
(0, 1)   and  t, k ∈  ℕ +   :

 (11)  g (  (1 − r)    t+k )  > g (  (1 − r)    k ) g (  (1 − r)    t ) . 

 (iii) Strongly Diminishing Impatience holds if and only if for every  r ∈  (0, 1)   
and  t, t′ ∈ ℕ  such that  t < t′ :

 (12)    
g (  (1 − r)    t ) 

  _  
g (  (1 − r)    t+1 ) 

   >   
g (  (1 − r)    t′ ) 

  __________  
g (  (1 − r)    t′+1

 ) 
  . 

 (iv) Delay Independent Strongly Diminishing Impatience holds if and only if for 
every  r ∈  (0, 1)  ,  t, t′ ∈ ℕ, k ∈  ℕ +    such that  t < t′ :

 (13)    
g (  (1 − r)    t ) 

  _  
g (  (1 − r)    t+k ) 

   >   
g (  (1 − r)    t′ ) 

  __________  
g (  (1 − r)    t′+k

 ) 
  . 

The proofs follow from the definitions. Next, we summarize the implications of 
risk attitude on intertemporal preferences in equation (1).

REMARK 3: Consider a DM whose preferences are represented by equation (1) 
with  g ( · )   continuous on   (0, 1)  .

 (i) Strict Certainty Effect (6) implies Delay Independent Diminishing Impatience 
(i.e., equation (11))

 (ii) Strict  Common Ratio Effect (5) implies Strongly Diminishing Impatience 
(i.e., equation (12)) and, hence, Delay Independent Strongly Diminishing 
Impatience (i.e., equation (13)).

The first claim holds by letting  p =   (1 − r)    k   and  q =   (1 − r)    t  ; the second claim 
holds by letting  p = 1 − r ,  q =   (1 − r)    t′−t  , and  ℓ =   (1 − r)    t  .
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For the relation in the direction from time to risk, Diminishing Impatience as 
defined above does not imply Weak Certainty Effect for general weighting  functions. 
The certainty effect implies a bias toward certainty irrespective of how risky the 
alternative is, the dual to which would be a bias toward the present   (t = 0)   irre-
spective of the delay between the two prospects being compared. In evaluating the 
reason for the severed connection between time and risk preferences, we note that 
the definition of diminishing impatience used in the literature and defined in Table 
1 focuses on a delay of a single period, thus only comparing  D (t)   to  D (t + 1)   as  t  
increases from  0 . In our setting, this  one-period definition is characterized by a par-
ticular property (equation (10)) of the weighting function  g ( · )  , that fails to gener-
alize to the case of longer delays (equation (11)), even under technical assumptions 
of continuity and differentiability of  g ( · )  , as shown in our  counterexample in online 
Appendix A. Thus diminishing impatience fails to account for  present bias behav-
iorally. Theorem 2 below shows that Delay Independent Diminishing Impatience is 
sufficient for Weak Certainty Effect, and Strongly Diminishing Impatience is suffi-
cient for Weak  Common Ratio Effect.

THEOREM 2: Consider a DM whose preferences are represented by equation (1) 
with continuous  g ( · )  .

 (i) Strongly Diminishing Impatience implies Weak  Common Ratio Effect.

 (ii) Delay Independent Diminishing Impatience implies Weak Certainty Effect.

PROOF:
(i) Assume Strongly Diminishing Impatience. By Remarks 1 and 2, it suf-

fices to show that equation (12) in Remark 2 implies that equation (5) in Remark 
1 holds with weak inequality and there exist  p, q, ℓ  for which equation (5) holds. 
Let  p = 1 − r ,  q =   (1 − r)    t′−t  , and  ℓ =   (1 − r)    t  . Then equation (5) holds.

We will show that for any  p, q ∈  (0, 1)   and  ℓ ∈  (0, 1]  , equation (5) in 
Remark 1 holds with weak inequality. Since Strongly Diminishing Impatience 
and Delay Independent Strongly Diminishing Impatience are equiva-
lent, in the following, we assume Delay Independent Strongly Diminishing 
Impatience. Consider a sequence    { m i  / n i  }   i=1  ∞    of rational numbers that converges 
to  lnp/lnqℓ , where   m i  ,  n i    are positive integers. Similarly, consider a sequence 
   { a i  / b i  }   i=1  ∞    of positive rational numbers that converges to  lnℓ/lnqℓ , 
where   a i  ,  b i    are positive integers. Note that  lnℓ/lnqℓ < 1,  so we can choose 
   { a i  / b i  }   i=1  ∞    such that   a i   <  b i   . Given these sequences, define a sequence   { r i  }  , such 
that  qℓ =  r  i  

 n i   b i    , that is   r i   =   (qℓ)    1/( n i   b i  )  < 1 . Note that as   a i  / b i    converges to  lnℓ/lnqℓ , 
  r  i  
 a i   n i    =   (qℓ)     a i  / b i     converges to    (qℓ)    lnℓ/lnqℓ  = ℓ . Similarly, as   m i  / n i    converges to  

 lnp/lnqℓ ,   r  i  
 m i   b i    =   (qℓ)     m i  / n i     converges to    (qℓ)    lnp/lnqℓ  = p .

Using Delay Independent Strongly Diminishing Impatience,  ∀  i :

    
g ( r  i   a i   n i   ) 
 _ 

g ( r  i   a i   n i  + m i   b i   ) 
   >   

g ( r  i   n i   b i   )  _ 
g ( r  i   n i   b i  + m i   b i   ) 

   .
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Using the continuity of  g , as  i → ∞ , Weak Common Ratio Effect follows:

    
g (ℓ) 
 _ 

g (pℓ)    ≥   
g (qℓ) 
 _ 

g (pqℓ)    .

(ii) Assume Delay Independent Diminishing Impatience. By Remarks 1 and 2, it 
suffices to show that equation (13) in Remark 2 implies that equation (6) in Remark 
1 holds with weak inequality and there exist  p, q  for which equation (6) holds. 
Let  p =   (1 − r)    k   and  q =   (1 − r)    t  . Then equation (6) holds.

Part (ii) is a special case of (i), where  ℓ = 1 ,   a i   = 0 ,   b i   = 0 , and Delay 
Independent Diminishing Impatience replaces Delay Independent Strongly 
Diminishing Impatience. ∎

In the above theorem, we have Weak  Common Ratio Effect and Weak Certainty 
Effect as behavioral implications, but not the versions with strict inequalities (Strict 
 Common Ratio Effect and Strict Certainty Effect). This gap is inevitable given the 
difference between the connectedness in the domain of risk preferences (i.e, the 
probabilities are numbers in   [0, 1]  ) and the  non-connectedness of the domain of time 
preferences (i.e., the dates are  nonnegative integers).8 The last step of the proof is to 
approximate a real number by the limit of rational numbers. When we take the limit, 
the related strict inequality inherited from behavior in the time domain becomes a 
weak inequality. We show in Corollary 1, that Strongly Diminishing Impatience 
implies Strict  Common Ratio Effect for almost all probabilities; Diminishing 
Impatience implies Strict Certainty Effect for almost all probabilities.

COROLLARY 1: Consider a DM whose preferences are represented by equation 
(1) with  g ( · )   continuous on   (0, 1)  .

 (i) There exists a dense subset   Δ 1    of    (0, 1)    2  ×  (0, 1]   such that Strongly 
Diminishing Impatience implies for any   (p, q, ℓ)  ∈  Δ 1   :

    
g (ℓ) 
 _ 

g (pℓ)    >   
g (qℓ) 
 _ 

g (pqℓ)   . 

 (ii) There exists a dense subset   Δ 2    of    (0, 1)    2   such that Delay Independent 
Diminishing Impatience implies for any   (p, q)  ∈  Δ 2   :

  g (pq)  > g (p) g (q) . 

PROOF:
For (i), define   Δ 1   =  { ( r   k ,  r   s ,  r   t )  | r ∈  (0, 1) , k, s ∈  ℕ +  , t ∈ ℕ}  . Notice that   

( r  i  
 m i   b i   ,  r  i  

 ( b i  − a i  )  n i   ,  r  i  
 a i   n i   )   in the proof of Theorem 2 is a sequence in   Δ 1    that converges to   

(p, q, ℓ)  ∈   (0, 1)    2  ×  (0, 1]  . Part (ii) is proved similarly. ∎

8 The proof of Theorem 1 in continuous time makes it clear that the complete relation, especially the relation 
from time preferences to risk preferences relies on the continuous time structure.
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V. Discussion

In the temporal rewards setting, Assumption 1 implies that the passage of time 
affects the desirability of a prize only through the exponential accumulation of risk. 
Alternatively, one could have additionally allowed for “pure”  time-discounting 
(earlier is better even when hazard rate  r = 0 ). The  risk-time correspondence in 
Theorem 1 would still hold in this alternative setting (details in online Appendix B) 
under certain separability conditions.

In the previous sections, we assume constant hazard rate, which implies pref-
erences are  Time-invariant (Halevy 2015). Under this assumption, we can deal 
with “static reversal” (violation of stationarity) and “dynamic reversal” (viola-
tion of  time-consistency) interchangeably. If we allow for an arbitrary hazard rate 
(i.e.,   r t   ≠  r s    for calendar times  t ≠ s ), static and dynamic reversals would no lon-
ger coincide. In online Appendix C we discuss how the results could be extended in 
that setting.

Moreover, neither assumption of “constant” or “arbitrary” hazard rate is more 
general in the context of our  two-way results. Assuming the former provides a more 
general result when behavior over time implies behavior under risk (the direction 
which is missing in Halevy 2008, Saito 2011), and assuming the latter provides a 
more general result when behavior under risk implies behavior over time (the direc-
tion already established in the literature).

IV. Conclusion

This paper establishes a tight relation between  nonstandard behaviors in the 
domains of risk and time, by considering a decision-maker with  non-expected util-
ity preferences who believes that only present consumption is certain while any 
future consumption is uncertain. In the domain of temporal rewards ( X ×  ℝ +   ), we 
provide a complete relationship between risk and time preferences using two intu-
itive notions of  time-behavior, Temporal Reversals and  Present-Biased Temporal 
Reversals, which can be intrinsically linked to hyperbolic and  quasi-hyperbolic 
discounting, respectively. For the choice domain of consumption streams (  X   ℕ  ), 
our main result is that the notion of Diminishing Impatience does not imply Weak 
Certainty Effect (and hence also does not imply the strict version of Certainty 
Effect), unless it is adequately extended to hold for all possible delays between 
streams under consideration. Additionally, a stronger condition, Strong Diminishing 
Impatience implies Weak  Common Ratio Effect, and also implies Strict  Common 
Ratio Effect for almost all probabilities. In Table 2 we summarize how the current 
paper links to Halevy (2008) and Saito (2011).

Further, the temporal behaviors considered in the two domains (e.g.,  Present-Biased 
Temporal Reversals from  X ×  ℝ +    and Delay Independent Diminishing Impatience 
from   X   ℕ  ), are also interlinked, as shown in Proposition 3. Table 3 summarizes our 
results.
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