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1 Introduction

1.1 Objective

The two cornerstones of Bayesian theory are the subjective prior and Bayesian
updating. Ellsberg (1961) demonstrates the behavioral limitations of the as-
sumption of a prior through his celebrated thought experiments, which have
the clear intuition that a probability measure does not permit a role for lim-
ited information and con�dence underlying beliefs. In this paper, we present
a parallel critique of the updating component consisting of both a thought
experiment and a laboratory experiment that provides supporting empirical
evidence.
The importance attached to Ellsberg's experiments is due to the pre-

sumption that in many instances of decision-making under uncertainty in
the �eld, information may be lacking to justify sharp beliefs. Clearly, this
presumption does not require that in all, or even most, such cases there is no
information at all. Our motivation begins with the presumption that often
there is a great deal of information, but the di�culty for the decision-maker is
that its interpretation may not be clear in the sense that the inferences to be
drawn from them are uncertain. In such cases we refer to hard-to-interpret,
or ambiguous, signals. Fed policy communication and qualitative corporate
news are two typical examples. They also illustrate the broader class of sit-
uations where complete information is complex and thus where information
often comes in the form of summaries, open to multiple interpretations (and
inferences), rather than in the form of detailed reports.
A timely example was provided by the COVID-19 pandemic. A policy-

maker had to choose an action to combat the potential new pandemic due
to the novel virus (and more recently - its variants). A critical unknown
was the probability that an infected individual in the population will su�er
serious health consequences (require hospitalization or, at the extreme, die).
There was information about the e�ects of the virus in other jurisdictions:
how many patients required hospitalization, and most importantly, the case-
fatality rate.1 However, it was not clear at the time what inferences to make
about the risk of su�ering serious health outcomes - a point that was well

1The case-fatality rate (CFR) is the number of deaths of individuals who tested positive
divided by the number of individuals who were con�rmed as infected. Importantly, CFR
is to be distinguished from the infection-fatality rate (IFR), which is the proportion of all
infections that result in death.
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understood by epidemiologists and received considerable attention in the
media. For example, even if the policy-maker knew how many people were
tested for the virus and how many of them tested positive, she could not
know how many people were infected but were not tested (because they
had only mild symptoms or because they died without having been tested).
Consequently, an observed high rate of serious health outcomes may have
indicated a high infection rate and that an infected individual was likely to
experience serious health outcomes, or alternatively, it may have reected
that only individuals who were symptomatic and severely ill were tested.
Similarly, an observed low rate of serious health outcomes admits more than
one interpretation. How would such hard-to-interpret information a�ect the
policy-maker's choice of action?
We identify choices in an Ellsberg-style binary setting that can be under-

stood as revealing that uncertainty about how to interpret signals matters
for behavior (Sections 2), and later (Appendix A), provide behavioral de�-
nitions of the attitude (aversion, a�nity or indi�erence) to signal ambiguity
in a much more general setting. Sensitivity to signal ambiguity, which is our
focal hypothesis, is conceptually distinct from sensitivity to prior ambiguity
(for example, about the composition of an urn or the hazard of serious health
outcomes in an evolving pandemic). Accordingly, while Ellsberg pointed to
the limitation of modeling prior beliefs by an additive probability measure,
our analysis points to the limitation of modeling updating in such a way that
updating conforms to the martingale property of beliefs (that is, prior beliefs
is an average of the set of posteriors). At the functional form level, additivity
of prior beliefs and the martingale property are the two distinct fundamental
properties of the Bayesian model. Importantly, the martingale property is
extended here to a property of preference (rather than probabilistic beliefs)
which need satisfy only mild nonparametric restrictions.
Studying the behavioral meaning of hard-to-interpret signals is motivated

in part by the inherent interest in such a fundamental notion; see below for
references to papers where ambiguity in signals plays a role. We believe that
although its importance is evident from applications such as the example
above, it has not been investigated systematically in decision theory where
prior ambiguity plays the predominant role. In addition, the way in which
hard-to-interpret signals are treated by decision-makers reects on the poten-
tial importance of the existing literature on ambiguity. Speci�cally, if such
signals themselves reduce con�dence in beliefs then there is reason to believe
that, at least in some circumstances, ambiguity might persist rather than
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being only a short-run phenomenon.
We present a thought experiment that demonstrates our proposed de�ni-

tion of sensitivity to ambiguous signals and we substantiate its relevance to
observed behavior in a controlled experiment. We elicit probability equiva-
lents to an event, both unconditionally and conditionally on two complemen-
tary signals. The experimental design is guided by the fact that even when
available information takes the form of noisy (or risky) signals, individuals
often fail to update their beliefs as speci�ed by Bayes rule. We therefore
employ a between-subject design that compares deviations from Bayesian
updating when signals are noisy (the control) to when they are ambiguous.
We �nd that ambiguous signals signi�cantly increase deviations from up-
dating that is consistent with Bayes rule. In addition, we �nd a signi�cant
association between reduction of compound lotteries (and indirectly - indif-
ference to prior ambiguity) and updating of beliefs that is consistent with
Bayes rule (both when signals are risky and ambiguous).
The paper proceeds as follows. The rest of this introduction considers

related literature. In Section 2, we present the thought experiment and
de�ne the behavior that is the focus of the current paper. The experimental
implementation is described in Section 3. Section 4 looks more deeply at the
focal behavior, and then describes its implications for some existing models
of preference. Appendix A extends and formalizes our framework. Online
appendices provide additional details.

1.2 Related literature

Two very recent experimental studies investigate updating when information
is (in some sense) ambiguous. Neither includes behavioral de�nitions for dif-
ferent attitudes to signal ambiguity, or highlights the relevance of the martin-
gale property. In a contemporaneous project, Liang (2022) elicits certainty
equivalents (not probability equivalents) for many bets (including uncertain)
and information structures (including uncertain). In the absence of behav-
ioral de�nitions, it is not clear how to identify attitudes. In addition, though
there is overlap in motivation, there is no overlap in design as Liang (2022)
does not include our main treatment with uncertain prior and ambiguous in-
formation. Therefore, he cannot compare the e�ects of risky and ambiguous
information when the prior is uncertain, which is the focus of our investiga-
tion. Shishkin and Ortoleva (2023) study how ambiguous information a�ects
the valuation of bets. They are not concerned with new behavioral de�nitions
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or with the special role of the martingale property. Rather, their focus is on
testing for the presence of dilation (Good, 1974; Wasserman and Seidenfeld,
1993), where ambiguity increases, and valuations fall, for every possible sig-
nal realization. The relation of dilation to our proposed behavioral de�nition
(2.5) is explained in Section 4.1.
Ambiguous signals are considered, implicitly or explicitly, in a number

of applied studies. Ambiguous communication is shown to arise endoge-
nously from maximizing behavior in a range of strategic settings (Bose and
Renou 2014; Blume and Board 2014; Kellner and Le Quement 2017, 2018;
Beauchene, Li and Li 2019; and Kellner, Le Quement and Riener 2022 for an
experimental counterpart). Levy and Razin (2016) study settings with group
communication in which communication, the signal in their model, creates
ambiguity. They consider several applications including to jury deliberations
and common-value auctions. In the context of human capital accumulation,
Giustinelli and Pavoni (2017) document that when foreign-born students en-
rol in the educational system in Italy and receive information about it, their
ambiguity about the general curricula increases over time. Ambiguous sig-
nals have been studied also in macro/�nance models (Epstein and Schneider
2010; Ilut 2012; Ilut, Kehrig and Schneider 2018; Yoo 2019). The distinction
in Daniel and Titman (2006) between tangible and intangible information is
suggestive of the distinction between noisy and ambiguous signals. In all of
these studies, preferences and/or the form taken by updating are assumed
known to the modeler and interpretations of the model are based on func-
tional form appearance or what seems \natural." This paper is complemen-
tary in that it takes behavior alone to be observable and asks, for example,
\what behavior would reveal an aversion to ambiguity in signals?"
Fryer, Harms and Jackson (2019) study the relation between signals that

are open to interpretation and polarization. They posit a particular updating
rule and study its implications for polarization. In contrast, we ask what can
be learned about updating from behavior with an objective of using identi-
�ed behavior to distinguish between alternative models of updating. Their
online experiment is designed to study polarization, while our experiment
is designed to examine whether uncertainty about signal interpretation is
revealed by behavior.
Updating under ambiguity has been studied in axiomatic decision the-

ory (see, for example, Gilboa and Schmeidler 1993; Pires 2002; Epstein and
Seo 2010; Gul and Pesendorfer 2021). The martingale property is studied
axiomatically in Cripps (2018), and is at the heart of the tests of Bayesian
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updating discussed by Shmaya and Yariv (2016) and Augenblick and Ra-
bin (2021); in all these cases, it is assumed that beliefs are represented by
a single (Savage) prior. Gajdos et al (2008) and Hayashi and Wada (2010)
incorporate imprecise information into models of preference. They assume
that information comes in the form of an objective (observable) set of prob-
ability measures over the state space, but they do not address updating, as
it is usually understood, because their model does not include both ex ante
and conditional stages. Riedel et al (2018) extend this line of work to a
dynamic framework and investigates conditions that deliver dynamic consis-
tency. None of these papers address the speci�c questions studied here.
Epstein and Schneider (2007, 8, 10) pay explicit attention to the behav-

ioral meaning of functional form speci�cations and they introduce and dis-
cuss the notion of ambiguous signals. In particular, they distinguish between
noisy and ambiguous signals, and correspondingly point to a new dimension
of information quality, distinct from the usual notion of the precision of a
noisy signal, that pertains to the ease/di�culty of its interpretation. They
also describe a thought experiment which we build upon here. An impor-
tant di�erence is that our thought experiment \leads to" and illustrates a
general model (Appendix A), while such a general analysis is not apparent
in the previous work. Moreover, the current paper is the �rst to document
empirically (in an experimental setting) the behavioral relevance of these
theoretical distinctions.

2 A thought experiment

This section builds on Ellsberg's two-urn experiment, and on Epstein and
Schneider (2007,8), and suggests a thought experiment to give behavioral
meaning to sensitivity to hard-to-interpret signals. A more general and for-
mal treatment is provided in Section 4.1 and Appendix A.

2.1 The choice problems

Consider a \payo� urn" that contains 10 colored balls, each of which is either
red or black, with at least one of each color. One ball will be drawn from
the urn and the decision-maker (DM) is asked to evaluate bets on its color.
A correct bet pays $100, while an incorrect bet pays $0. Elicit probability
equivalents in two ordered scenarios.
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1. Unconditional choice: Let fR and fB denote bets on red and black,
respectively, being drawn from the payo� urn. Elicit unconditional
probability equivalents p0;R and p0;B, where

fR �0 (100; p0;R) and fB �0 (100; p0;B) .

where (100; p) is the bet that pays $100 with probability p, and $0
with probability 1� p; and the relation �0 denotes indi�erence at the
unconditional stage. The intuitive behavior highlighted by Ellsberg in
his two-urn experiment corresponds to p0;R; p0;B <

1
2
, but this is not

necessary for what follows.

2. Conditional choice: The DM is now told about a second \signal urn"
that is constructed by adding an equal number (N) of red and black
balls to the payo� urn. The total number (2N) of balls added is not
speci�ed. Then a ball is drawn from the signal urn and its color is
revealed: � 2 � = f�R; �Bg ; where � denotes the color of the ball
drawn from the signal urn. Once again, consider bets on the color to be
drawn from the payo� urn and elicit conditional probability equivalents
p�;R and p�;B for each signal � 2 f�R; �Bg:

fR �� (100; p�;R)
fB �� (100; p�;B) .

(2.1)

where �� denotes indi�erence at the conditional stage (after a signal
is observed).

Below we assume

(p�R;R � p�B ;R) � (p�R;B � p�B ;B) < 0, (2.2)

a property that we call signal diversity. Most importantly, it excludes the
case where the same signal is viewed as (weakly) better for both bets. For
example, a special case that is natural for the present setting is that the DM
views �R as a better signal for the bet on red than is �B, and the reverse for
the bet on black, that is,

p�R;R > p�B ;R and p�R;B < p�B ;B. (2.3)

We assume that risk preferences (the ranking of lotteries) are una�ected
by signal realizations and are monotone in the sense that

p0 > p =) (100; p0) �0 (100; p) .
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Given that lotteries have only two possible outcomes, monotonicity implies
the Independence axiom and hence expected utility theory. However, the
thought experiment and the laboratory investigation that follow are immune
to documented descriptive violations of Independence, (the Allais paradox,
for example), because all such evidence concerns choice between lotteries
having at least three outcomes.

2.2 Behavior: the symmetric case

It is convenient to adopt the following notation: the payo�-relevant state
space is S = fR;Bg, the set of prizes is X = f100; 0g, and the signal space
is � = f�R; �Bg. Conditional and unconditional preferences are de�ned on
bets and lotteries, that is, on ffR; fBg [�(X) ; where ffR; fBg are bets on
red and black from the payo� urn and � (X) are objective lotteries over X.
Because information about both payo� and signal urns is color-symmetric,

one would expect a \rational" individual to satisfy also the following sym-
metry condition:

p0;R = p0;B, p�R;R = p�B ;B, p�R;B = p�B ;R. (2.4)

We assume (2.4) throughout this section, in Section 4.1, and also in the
laboratory experiment. See Appendix A for the more general case where
symmetry is not imposed, and for other generalizations of the above choice
problems whereby S; � and X can be any �nite sets, and bets on colors can
be replaced by arbitrary Savage acts from S into X.
Assuming (2.4), our focal behavior corresponding to (strict) aversion to

signal ambiguity is:
p0;R >

1
2
p�R;R +

1
2
p�B ;R. (2.5)

In the rest of this section, we describe some intuition for (2.5). Weak aversion,
strict and weak a�nity, and indi�erence or neutrality are de�ned by the
obvious modi�cations of (2.5) and can be motivated similarly. (All these
inequalities refer explicitly only to bets on red, corresponding inequalities
for bets on black follow immediately from symmetry.) Though all forms of
non-indi�erence (inequality in (2.5)) are of equal interest, as is common in
the literature our discussion focuses on strict aversion.
The intuition we suggest for (2.5) centers on uncertainty about the num-

ber of balls added to the signal urn and hence about how to interpret a
signal. To explain, note �rst that the unconditional probability equivalent
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p0 reects the attitude towards the uncertain composition of the payo� urn,
as in Ellsberg's experiment, but is not a�ected by uncertainty about signal
interpretation because even the possibility of signals is presumably unknown
at the unconditional stage. However, uncertainty about signal interpretation
is relevant for conditional probability equivalents. For example, a red draw
(�R) is a strong signal in favor of a bet on red (and against a bet on black)
if only a small number of balls were added in constructing the signal urn,
but it is only a weak signal for red (and against black) if a large number
of balls were added. A conservative decision-maker facing this uncertainty
might interpret �R as a weak positive signal when evaluating a bet on red,
(corresponding to large N), hence leading to a small probability equivalent
p�R;R for betting on a red ball drawn from the payo� urn. But similar un-
certainty applies when interpreting the implication of observing a black ball
drawn from the signal urn, and a conservative attitude would lead to viewing
it as a strong negative signal for a bet on red (corresponding to N small), and
hence to a small probability equivalent p�B ;R. This suggests how aversion to
signal ambiguity might explain (2.5).
There is a parallel with the Ellsberg-based approach to prior ambiguity.

Given symmetry (2.4), and hence p�B ;R = p�R;B, then (2.5) can be described
as saying that a given signal (�R) is interpreted as providing weak support
for both an event (drawing red) and its complement (drawing black). This is
a counterpart of the essence of Ellsberg's two-urn experiment, namely that
both an event and its complement are deemed unlikely.
To illustrate (2.5), consider a numerical example in which DM has the

following additional information regarding the payo� and signal urns: All 8
unknown balls of the payo� urn are red (black) if a fair coin toss gives heads
(tails); and the signal urn is constructed by adding N balls of each color,
where N = 0 or 45. Thus, if DM calculates objective probabilities correctly
(satis�es the Reduction of Compound Lotteries axiom, ROCL), presumably
p0;R =

1
2
as there is no prior ambiguity.2 The posterior probabilities satisfy

Pr (R j �R) 2 f:53; :82g and Pr (R j �B) 2 f:18; :47g .

Then aversion to uncertainty about signal interpretation (the signal is strong

2Extensive research has documented that ROCL is not a good behavioral assumption
in this case, and that behavior over compound lotteries is associated with ambiguity
attitude. In the experimental design we will both control for this behavior, and use the
measured violation of ROCL to approximate ambiguity attitudes (see Section 3.1).
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if N = 0 but weak if N = 45) plausibly leads to probability equivalents
p�R;R < :67 and p�B ;R < :33, and hence to (2.5).
We focus on (2.5) in our experiment. Therefore, in order to further justify

its interpretation, Section 4.1 deepens the intuition for this condition, while
still maintaining the assumptions speci�ed above. Appendix A goes much
further towards describing a general theory and drops the restrictions of
binariness and symmetry.

3 A laboratory experiment

This section describes the design and results of a lab experiment whose goal
is to evaluate the empirical applicability of the signal-sensitive behavior pro-
posed in (2.5). There are a few major practical challenges that a lab exper-
iment must overcome. First, subjects may not be Bayesian even when the
accuracy of the signal is known (see Grether 1980, for an early example in
Economics, and Benjamin 2019 for a current comprehensive survey). Sec-
ond, they might not reduce objective compound lotteries, a behavior that
has been shown to be empirically associated with sensitivity to ambiguity.
Third, they may not satisfy expected utility even when dealing with objec-
tive probabilities. Fourth, even if all the above are non-issues, and subjects
are sensitive to signal ambiguity as we suggest, they may use the elicitation
system to hedge such ambiguity. In the following subsection we detail how
we dealt with these challenges and provide the details of the experimental
design.

3.1 Experimental Design

In order to decrease the cognitive load on subjects, we adopted a simple
between-subject design, where the control group received a known risky sig-
nal, while the treatment group received an ambiguous signal. Our focus is
on the di�erential e�ect of ambiguity versus risk on updating.
The environment is similar to the numerical example presented in Section

2.2. The payo� urn (for both groups) consisted of 10 balls, that contained
either 9 red balls (and 1 black ball) or 1 red ball (and 9 black balls), each
with probability .5, as in the left panel of Figure 3.1. Hence, the probability
of drawing a red ball is either .1 or .9, each with probability .5. Four con-
siderations motivated us to eliminate (pure) prior ambiguity from the payo�
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Figure 3.1: The payo� urn (left) and the basket used to elicit probability
equivalents (right)

urn and instead employ a compound risky urn. First, there exist now strong
empirical evidence that many subjects do not distinguish between symmet-
ric ambiguous environments and similar environments with compound risk
(Halevy 2007; Dean and Ortoleva 2019; Gillen, Snowberg and Yariv 2019;
and especially Chew, Miao and Zhong 2017). The payo� urn is a special
case of Chew et al's two-point compound-risk,3 which they show is similar
to two-point ambiguity. We therefore expect many (ambiguity averse) sub-
jects to prefer a one-stage lottery with a winning probability of .5 to a bet
on either color from the payo� urn. Second, symmetry between a bet on
red and a bet on black is universal in such a case, while if the composi-
tions were symmetric but included prior ambiguity, then some subjects may
have had non-symmetric belief - which would complicate the identi�cation of
signal-ambiguity. We provide a theoretical identi�cation result for this case
in Appendix A. Third, theoretical identi�cation relies on subjects isolating

3\Two-point compound risk" refers to two-stage lottery with symmet-
ric two possible second-stage lotteries and uniform �rst-stage, of the form:�
(x; q; 0; 1� q) ; 12 ; (x; 1� q; 0; q) ;

1
2

�
where 0 � q � 1. \Two-point ambiguity" refers

to the corresponding ambiguous scenario, where the second-stage is determined by the
physical environment, and the �rst-stage by the decision maker's belief.
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their responses and not using the random incentive system to hedge the prior
ambiguity. Baillon, Halevy and Li (2022b) document strong empirical evi-
dence against this isolation assumption. By using a compound-risky payo�
urn and o�ering the subject to choose a color to bet on (red or black) we
eliminated any hedging opportunities in the unconditional choice.4 Fourth,
as a by-product of this design choice, we can evaluate the association between
reduction of compound lotteries and Bayesian updating, even when the signal
is risky (in a framework with no subjective uncertainty or ambiguity). To the
best of our knowledge, there exist no empirical evidence on this association.
The limitation of this design choice is that we cannot measure directly the
association between attitudes to prior and signal ambiguities. However, the
unconditional PE serves as a control for the extent of violation of ROCL,
and indirectly - a measure of attitude to prior ambiguity.
The elicitation of probability equivalents (PEs) was implemented as in

Freeman, Halevy and Kneeland (2019). Subjects were presented with a bas-
ket containing 100 balls numbered from 1 to 100 (as in the right panel of
Figure 3.1), and on each line of a choice list they were asked to choose be-
tween their bet on the payo� urn (option A) and a bet that the ball drawn
from the basket has a number that is smaller or equal to the line number (op-
tion B), so the latter increases when the subject moves down the list. In the
initial choice list the step was 10 percent, and then subjects were presented
with a zoom-in list were the resolution was 1 percent.5;6 One may worry that

4Under reduction of compound lotteries, there should not be a concern for hedging
here, as the payo� urn is compound risk and not ambiguous. However, if a subject
identi�es the two, and reacts to ambiguity using hedging, she may hedge here as well. As
a result, she may report the probability equivalent .5 for bets on both red and black from
the payo� urn, even if her true probability equivalent is smaller than .5 (Baillon, Halevy
and Li 2022a).

5If subjects switched more than once in a choice list, a pop-up explained to them the
logic of monotonic preferences. However, if they wished to switch multiple times - they
were allowed to do so. In other words, we did not impose a single crossing, but tried to
make sure subjects understood their choices. This technique was �rst used in Freeman et
al (2019).

6We calculated the probability equivalent as the average of the last line in which Option
A was chosen and the �rst line in which Option B was chosen. For subjects whose choices
are consistent with monotone and transitive preferences, these lines will be consecutive
(single switching point, e.g. if a subject switched to B at .5 then the PE would be .495).
If a subject switches multiple times between A and B (reported in Appendix B.3.1), this
is the midpoint in the range of switching (so if the last line A was chosen is .6 and the
�rst line B was chosen was .5, the reported PE would be .55).
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if subjects have non-expected utility preferences, the elicitation of PEs is not
incentive compatible. As demonstrated in Freeman et al (2019) and again in
Freeman and Mayraz (2019), this poses a challenge only when the constant
alternative in the choice list is certain, while in our case it is uncertain.
The control group facing a risky signal was then introduced to a signal

urn constructed by adding 5 red and 5 black balls to the payo� urn (left panel
of Figure 3.2). The signal urn therefore included 20 balls, which were equally
likely to be 14 red (and 6 black) or 6 red (and 14 black). Conditional PEs
were elicited, that is { the PE of the chosen bet on the payo� urn conditional
on each color being drawn from the signal urn. By Bayes rule, if the prior
probability that the payo� urn contains a single red ball is p, and if the signal
urn contains N additional balls of each color, then the posterior probability
of drawing a red ball from the payo� urn conditional on a red ball being
drawn from the signal urn is:

P (Rj�R; N) =
9 (9 +N) (1� p) + (1 +N) p
10 [(9 +N) (1� p) + (1 +N) p] (3.1)

Applied to the risky signal urn (N = 5), the Bayesian updates of P (R)
are .66 and .34 for a favorable and unfavorable signal, respectively. We did
not expect subjects to calculate Bayes rule exactly. In order to facilitate
a reasonable approximation to Bayes rule, and inspired by Gigerenzer and
Ho�rage (1995), we presented to subjects the two possible signal urn com-
positions (right panel of Figure 3.2), which suggest that the probabilities of
drawing the chosen color from the signal urn are .7 or .3 depending on the
composition of the payo� urn.
The treatment group faced an ambiguous signal urn, constructed by

adding N balls of each color to the payo� urn, where N was either 0 or
45 (left panel of Figure 3.3). That is, the signal urn contained either 10
balls (with a composition of 9R1B or 1R9B) or 100 balls (with a composi-
tion of 54R46B or 46R54B). If N = 0 the signal is much more informative
than if N = 45; accordingly, if p = :5, then P (Rj�R; N = 0) = :82 while
P (Rj�R; N = 45) = :532: As done for the control group, we presented sub-
jects with images of the possible compositions of the signal urn (right panel
of Figure 3.3) in order to facilitate their intuitive reasoning when eliciting
conditional PEs.
We chose the risky and ambiguous signal urns such that if the likelihood

in the ambiguous treatment is symmetric then the Bayesian posterior for
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the risky signal is approximately equal to the average of the two possible
Bayesian posteriors for the ambiguous signals.7

One might be concerned that the elicitation of PE is noisy, in the sense
that the reported PE equals the DM's true PE plus some measurement error.
As such, a skeptical reader may worry that the elicitation of two (conditional)
PEs generates more noise compared to the single (unconditional) PE, and
hence mechanically introduces a non-neutral attitude to signal ambiguity,
even if the DM is Bayesian. However, this is not the case as random noise
would tend to cancel out, and the average conditional PEs would be close to
the prior. Hence, the noise (or measurement error) hypothesis would work
against �nding non-neutrality to signal ambiguity. More crucially, the con-
trol (risky) group reported two conditional PEs as well, and our focus is on
the di�erential e�ect of ambiguous signals relative to this control. Moreover,
even if the noise hypothesis is extended to the mental calculation of PEs and
the comparison between the risky (control) and the ambiguous (treatment)
signals, it will (again) work in the direction of the null hypothesis. If subjects
update using Bayes rule, the ambiguous signal treatment involves an addi-
tional calculation relative to the risky signal control { subjects must calculate
the probability equivalent for each composition of the signal urn and then
take a weighted average of the two numbers. If the mental calculation of PE
is noisy, then taking an average of the two PEs would lower the measured
noise and one would observe even smaller deviations from Bayesian updating
in the ambiguous signal urn than in the risk control.
As we elicited PEs conditional on both red and black balls being drawn

from the signal urn and paid only one choice, we expose the experimental
design in the conditional stage to the theoretical possibility of hedging. That
is, if a subject is ambiguity averse, she may use the incentive system to
hedge part of the ambiguity concerning the inferences made based on the
signal urn. Although this is a theoretical possibility (and a concern had the
payo� urn been ambiguous), we �nd it highly improbable that subjects will
be sophisticated enough to hedge in this way. In any case, the resulting bias
would be that ambiguity averse subjects who do not have probabilistic beliefs
about the structure of the signal will behave as if they are Bayesian, which
is the null hypothesis in the current investigation.

7A design that uses the average of the two possible signal urns (for example with
N = 22) will result in a Bayesian posterior of approximately :56 that is very close to the
less informative signal (N = 45).
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To sum up, the decisions made by subjects were straightforward. Each
subject chose only three PEs, namely, assuming the subject chose to bet
on red: p0;R { the unconditional PE; p�R;R and p�B ;R { the PEs conditional
on drawing a favorable (red) and unfavorable (black) signal from the signal
urn. Since symmetry is built into the payo� urn using the compound lot-
tery, Bayesian updating implies that the unconditional PE is the (equally
weighted) average of the conditional PEs (see Lemma 1). Therefore, our
interest is in measuring the deviation from this benchmark

(0:5p�R;R + 0:5p�B ;R)� p0;R. (3.2)

However, since we do not expect subjects to be exactly Bayesian even in the
case of a risky signal, we compare this measure for hard-to-interpret signals
with the corresponding measure for risky signals.
Before moving to results, one may wonder what would be the e�ect of

replacing the ambiguous signals with two equally likely possible signals (that
is, N = 0 and N = 45, each with probability of .5). As argued above, there
is now considerable empirical evidence that many DMs identify ambiguous
environments with compound but risky environments in which they do not
reduce compound lotteries. This evidence suggests that modeling ambiguity
as a compound object has sound behavioral support, and contributes to the
understanding of new dimensions of ambiguity.
The experiment was conducted at the Toronto Experimental Economics

Laboratory in March 2018. Subjects had to answer 12 comprehension ques-
tions, and were incentivized by $0.25/question to answer each correctly on
their �rst attempt (they had to answer it correctly before moving to the next
question/stage). The experiment was programmed in zTree (Fischbacher
2007). The potential prize in the experiment was $20 plus a show-up pay-
ment of $7 and a maximum of $3 as payment for answering the comprehen-
sion question correctly. We recruited 154 subjects: 68 for the risk control
and 86 for the ambiguous signal treatment. The instructions as well as the
experimental interface are included in Appendix B.4.

3.2 Results

This section reports results for 129 subjects (about 84% of all subjects): 60
in the risky signal control and 69 in the ambiguous signal treatment, all of
whom satis�ed the following two weak conditions. They did not switch more
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than once in the choice lists (so their choices are consistent with monotone
and transitive preferences), and their \favorable" conditional PE (the color
of the ball drawn from the signal urn matches the color they chose to bet
on in the payo� urn) is not lower than their \unfavorable" conditional PE
(the color of the ball drawn from the signal urn does not match the color
they chose to bet on in the payo� urn). The latter condition requires that
subjects respond in a way consistent with understanding what are \favorable"
and \unfavorable" signals (as the signal is always informative), a key feature
of the experimental environment. We believe that the choices of the excluded
subjects reect confusion rather than deliberate choice.8;9;10

Throughout this section we consider subjects who deviate by up to 2.5%
from standard behavior (reduction of compound lotteries and Bayesian up-
dating) as exhibiting \approximate" standard behavior.

3.2.1 Unconditional probability equivalents

48% of subjects (62 out of 129) have unconditional PE of approximately .5,
45% (58 subjects) have unconditional PE lower than .475 and the remaining
7% (9 subjects) higher than .525. These are standard results for 2-point
ambiguity and compound risk attitude (Halevy 2007; Chew et al 2017), and
justify our behavioral approach of using compound lotteries to mirror two-
point ambiguity. As expected, there is no treatment e�ect when measuring
unconditional PE (p-value for Fisher exact test is .925).

8The assignment into the risky and ambiguous treatments is random: 4 out of 68 and 6
out of 86 subjects in the risky and ambiguous signal treatments, respectively, have multiple
switching in the unconditional PE stage (which is identical). The di�erence is insigni�cant
(p-value of Fisher exact test is 1). Moreover, even if one considers all excluded subjects
(8 in the risk control and 17 in the ambiguous-signal treatment), the di�erence between
the treatments is not signi�cant (p-value of .196 in a Fisher exact test).

9In a previous version of the paper we used a misguided criterion that was \too strict"
in classifying subjects. In particular, subjects for whom both conditional PEs were lower
than the unconditional PE, as predicted by (4.2), were classi�ed as if they have updated
in the \wrong" direction.

10Appendix B.3.1 reports the results for all subjects, which are qualitatively similar to
those reported below.
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3.2.2 Bayesian updating

In the risky-signal control 50% of subjects are approximately Bayesian11 in
the sense that their unconditional PE is approximately the average of their
conditional PE, while in the ambiguous-signal treatment the proportion falls
to approximately 32%. The increase in the incidence of non-Bayesian be-
havior as a response to hard-to-interpret signals is signi�cant at the 5% level
(p-values of one-sided proportion test and one sided Fisher exact test are
.018 and .028, respectively).
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Figure 3.4: Bayesian behavior and attitude to signal ambiguity

Figure 3.4 demonstrates that two-thirds of the increase in non-Bayesian
behavior is obtained among subjects who exhibit aversion to signal ambiguity
(the average of the conditional PEs is lower than the unconditional PE),
where the proportion of subjects increases by more than 50% relative to the
risky-signal control (from 20% to almost 32%).

3.2.3 Reduction of compound lotteries and Bayesian updating

Table 3.1 explores the relation between reduction of compound lotteries

11See Appendix B.3.2 for the CDFs of the di�erence, demonstrating that the 5% ap-
proximation is inconsequential for our results
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Risky Signal ROCL
Bayesian Yes No Total

Yes 21 9 30

No 9 21 30

Total 30 30 60

Ambiguous Signal ROCL
Bayesian Yes No Total

Yes 16 6 22

No 16 31 47

Total 32 37 69

Table 3.1: Frequencies in the risky signal control (left) and ambiguous signal treatment
(right). Bayesian (rows) is approximately satisfying Bayes rule (left) and being approxi-
mately neutral to signal ambiguity (right). ROCL (columns) is having unconditional PE
of approximately 0.5. The p-value of Fisher exact test is .004 in both.

and Bayesian updating, and (indirectly12) between attitudes towards prior-
ambiguity and towards signal-ambiguity. We �nd that the association be-
tween approximately reducing compound lotteries and being approximately
Bayesian in the risky-signal control is signi�cant at the 1% level. More-
over, the association between reduction of compound lotteries (and indi-
rectly prior-ambiguity neutrality) and being neutral to signal ambiguity in
the ambiguous-signal treatment is signi�cant at the 1% level, though the
proportion of Bayesian subjects in this treatment is much lower (32% in the
treatment versus 50% in the control).

3.2.4 Favorable and unfavorable signals

Although not the main focus of our study, in the spirit of the literature
surveyed in Benjamin (2019) it is interesting to note how subjects respond
to favorable and unfavorable signals when the signal is risky and when it is
ambiguous, while assuming an unconditional prior of .5. Figure 3.5 plots the
distribution of responses that are consistent or deviate from the Bayesian
benchmark in the risky control and the ambiguous treatment, for favorable
and unfavorable signals separately.
In the risky signal control, 13% of subjects had favorable PE that was

approximately the Bayesian update of .5 (.66 +/- .025), while 63% of the
remaining had PE that was below this. In the ambiguous signal treatment,
and assuming equally likely signals, only a single subject had PE that was
approximately the Bayesian update of .5 (.676 +/- .025), while 75% of the

12As discussed above, we have only an indirect measure of prior-ambiguity, since using
unconditional PE measures attitude to 2-point compound-risk that has been shown to be
strongly associated with attitude to two-point ambiguity (Halevy, 2007; Chew et al 2017).
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Figure 3.5: Distribution of updating in response to risky/ambiguous favor-
able/unfavorable signals

others had PE that was below the Bayesian benchmark of .5. For the unfa-
vorable signal, the treatment e�ect is even starker: 18% of subjects in the
risk control are close to the Bayesian update of .5 (.34 +/- .025), and the
remainder are almost equally split between those whose unfavorable PE is
higher and lower than the benchmark. In the ambiguous signal treatment,
only 3 out of 69 are approximately Bayesian (.324 +/- .025, assuming equally
likely signals and a prior of .5), and almost 97% (64 subjects) of the others
have PE that is higher than the Bayesian benchmark.
Three comments are in order regarding these observations. First, as noted

above, most subjects do not start from an unconditional PE of .5 (it is
typically lower). Although one can adjust for the prior over the composition
of the payo� urn based on individual unconditional PE and calculate the
Bayesian benchmark based on this imputed prior { as is done in Figure
3.6, it is important to note that this approach is inconsistent with Bayesian
rationality. For example, if a subject chose to bet on red from the payo�
urn and her unconditional PE is smaller than .5, one would impute that she
believes that the payo� urn is more likely to contain 9 black balls than 9 red
balls. But had this been the case, she should have chosen to bet on black (and
not red) from the payo� urn. Second, even if the average behavior in the risky
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Figure 3.6: Distribution of updating in response to risky/ambiguous favor-
able/unfavorable signals

signal treatment is not too far from the Bayesian update of .5, there exists a
huge heterogeneity at the individual level. Third, the tendency to underreact
to an unfavorable ambiguous signal can be rationalized by the belief that the
signal is more likely to be less informative (it is more likely that the signal urn
contains 100 balls rather than 10 balls). Indeed, this is consistent with the
tendency to underreact to a favorable signal as well.13 This demonstrates the
necessity to measure individual behavior using (3.2), as it ties together the
conditional (favorable and unfavorable) PEs and unconditional PE, allows
for non-neutral attitude to prior ambiguity (compound-risk), and answers
the crucial question if there exists a prior over the possible signals that can
rationalize the unconditional/conditional PEs via Bayesian updating? (see
discussion in 4.3.1).

13We believe that an alternative approach that assumes a symmetic likelihood (as
assumed above) and attempts to rationalize the favorable/unfavorable conditional PE
relative to the prior of .5, based on heterogeneous ambiguity attitude cannot tie together
the three PEs in a consistent way.
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4 Theoretical perspectives

4.1 Aversion to signal ambiguity: further discussion

Here we provide additional theoretical motivation and perspective for (2.5).
Recall that in both the thought experiment and in the experimental im-

plementation, because of the speci�cation of two ordered scenarios, signals
are not anticipated when unconditional choices are made. To clarify the rel-
evance of \(un)anticipated signals," suppose that a choice between prospects
is made ex-ante, before realization of a signal but with the expectation that
before the state of the world is realized, a signal about the state will be forth-
coming. Though choice cannot be made contingent on the signal, its mere
anticipation can still a�ect the ex-ante evaluation of prospects { for example,
if the DM backward inducts from anticipated conditional rankings. In that
case, unconditional choices would be \contaminated" by the signal structure,
which would leave unclear how to isolate the behavioral implications of the
signal structure. It follows that the behavior described throughout this paper
should not be seen as describing dynamic choice, but rather as choices in two
di�erent (with and without signals), but related, settings (the payo� urn is
common).14

In order to provide additional motivation for (2.5), we adapt the usual
practice in the literature on unconditional ambiguity-sensitive preferences,
where behavior in the \ambiguous" domain (bets on Ellsberg's unknown
urn) is compared with behavior in the risk domain (bets on Ellsberg's known
urn). Behavior in the risk domain is assumed to be \standard" (expected
utility), and di�erences in behavior across the domains are attributed to
non-indi�erence to ambiguity. Because our focus is on updating behavior,
we go further in these respects. In our case, the comparison risk domain
includes also risky (\noisy") signals and in addition, updating in the risk
domain is assumed to conform to Bayes' rule.15 Then, for each color in turn,
we compare bets on that color from the payo� urn versus from a risky urn

14Alternatively, if the environment is dynamic but the decision maker is myopic or
cannot anticipate possible signals, similar behavior may arise. Since it may be challenging
to identify myopia, we have concentrated (both theoretically and experimentally) on the
setting of two ordered scenarios.

15This discussion applies to the thought experiment. In the experiment itself, however,
we do not make such an assumption, but compare the updating behavior under risk and
ambiguity (see Section 3.1.)

22



(constructed below) both unconditionally, and then also conditionally after
realization of both ambiguous and noisy signals.
Accordingly, consider a hypothetical risky signal structure featuring two

noisy signals, denoted also �R and �B, with probabilities given by some
� 2 �(�). Let the ex ante risk counterpart of a bet on red be the objective
lottery (100; ��Rp�R;R + ��Bp�B ;R). Assuming Bayesian updating in the risk
domain, the \posterior lotteries" are (100; p�;R) if the ��-signal is realized,
where � = �R, �B. Therefore, for each signal �, the DM would be indi�erent
between fR and (100; p�;R), (since p�;R is the probability equivalent for fR
according to the conditional preference ��). Signal ambiguity is absent at
the unconditional stage and also in the risk domain, while aversion to it is
reected in the conditional probability equivalents p�;R, thus suggesting that
fR �0 (100; ��Rp�R;R + ��Bp�B ;R). Similarly for the corresponding state-
ments regarding the bet on B. Since any � is plausible as the hypothetical
signal likelihoods, one is led to the following de�nition of aversion to signal
ambiguity: There exists � = (��R ; ��B) 2 �(�), such that

p0;R > ��Rp�R;R + ��Bp�B ;R and (4.1)

p0;B > ��Rp�R;B + ��Bp�B ;B.

Under symmetry (2.4), clearly (2.5) implies (4.1). Note that � =
�
1
2
; 1
2

�
is not implied logically by the symmetry condition (2.4), nor is it \natural"
given its role as de�ning a hypothetical (shadow) risky signal structure -
any � would do. However, the next Lemma shows, assuming also diversity
(2.2), that �xing � =

�
1
2
; 1
2

�
is without loss of generality and hence that the

two de�nitions are equivalent. Therefore, the above intuition applies also to
(2.5).

Lemma 1 Assuming signal diversity, there exists � 2 �(�) satisfying (4.1)
if and only if (2.5) is satis�ed.

Proof. Given symmetry (2.4), condition (2.5) implies (4.1) with �� =
1
2

for all �. Conversely, suppose there exists � as indicated but that p0;R �
1
2
p�R;R +

1
2
p�B ;R. Then, for both s = R;B:

����p�;s < p0;s � 1
2
p�R;s +

1
2
p�B ;s =)

0 <
�
1
2
� ��R

�
(p�R;s � p�B ;s) .

But this is impossible given signal diversity (2.2).
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Further perspective is provided by modifying the existential quanti�er
\there exists �" in (4.1) to \for all �," thus requiring that the behavior
indicated in (4.1) be exhibited for all signal structures. This condition is
equivalent (given symmetry) to requiring that

p0;R > p�R;R and p0;R > p�B ;R,

or, more explicitly in terms of preferences,

fR �0 (100; p�;R) for � = �R; �B. (4.2)

This says roughly that, for each �, �� is more ambiguity averse than �0 in
the sense of the comparative notion widely adopted in the decision theory
literature and built on the following intuition: given that fR �� (100; p�;R),
that the lottery is ambiguity-free, and that �0 is less averse to ambiguity,
then fR �0 (100; p�;R) follows. Thinking of ambiguous signals as increasing
ambiguity aversion beyond what prevails ex ante, one might take (4.2) as
the behavioral meaning of signal ambiguity aversion. Clearly, (4.2) is strictly
more demanding than (2.5). Moreover, it is too strong in our view.
For further perspective, note that (4.2) is strictly weaker than dilation,

which, in a maxmin framework corresponds to the case where, for every signal
realization, the set of posteriors enlarges (includes) the set of priors. (See
the literature cited in the Introduction.) A fortiori it is also too strong to
capture what we have in mind, as we now explain.
A signal � may reduce utility because of uncertainty about its interpre-

tation, but, in general, a signal also contains information about the state
space that could render the bet under consideration more attractive, thus
raising utility. Think of two dimensions of a signal { its \mean informational
content" and \uncertainty about that content" { that may a�ect utility in
opposite directions. The condition (4.2) identi�es as ambiguous only signals
for which the uncertainty e�ect dominates for all signal realizations. In con-
trast, the behavior that we propose can identify uncertainty about a signal's
interpretation even if, for some realizations, its mean informational content
dominates and results in an overall increase in utility. To see how, suppose
that contrary to (4.2), (100; p�;R) �0 fR, and that there is nevertheless un-
certainty about the interpretation of �R. The indicated strict ranking reveals
that �R is a very strong favorable signal in the mean dimension for drawing
red, strong enough to more than o�set di�culties with interpretation. But
then it is also a very unfavorable signal for drawing black. Thus �R makes the
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bet on black unattractive because of both uncertainty about interpretation
and because of its negative mean informational content. This can lead to its
probability equivalent p�;B being su�ciently small that, assuming symmetry
(2.4), fR �0 (100; 12p�R;R +

1
2
p�B ;R) is satis�ed.

The preceding suggests that (4.2) is too restrictive to be taken as the
behavioral manifestation of aversion to signal ambiguity. Though the behav-
ior we suggest may be too broad, in that it might admit other rationales
unrelated to signals being hard-to-interpret,16 an advantage of our proposed
liberal approach is that a model that precludes (2.5) is more readily dismissed
as being unable to capture aversion to signal ambiguity.

4.2 Relation between theory and experimental design

Identifying violation of the martingale property (2.5) with sensitivity to signal
ambiguity is based, theoretically and experimentally, on comparative stat-
ics of updating under risk and under ambiguity. Our experimental design
parallels the theoretical approach of comparing PE conditional on risky (as
control) and ambiguous (as treatment) signals to unconditional PE, though
in a between-subject experimental design. This design allows the experi-
menter to control for deviations from the standard assumptions { Bayesian
updating and reduction of compound objective lotteries, which are present
also in the risky signal control, and concentrate solely on the marginal e�ect
of ambiguous signals. Hence, only the marginal e�ect of ambiguity in devia-
tions from the martingale property should be attributed to signal ambiguity.
To minimize confusion, it is crucial to acknowledge that while we experimen-
tally employ a compound objective lottery to generate the payo� urn (for the
reasons discussed in Section 3.1 - mainly to impose symmetry and eliminate
the potential for hedging), we do not provide here a decision-theoretic model
that can simultaneously accommodate ambiguity aversion { which is related
to violations of reduction of compound objective lotteries, and sensitivity to
signal ambiguity. Moreover, we are not aware of a formal model that can
account for the documented association between violation of ROCL (as ob-
served in the payo� urn) and departure from Bayesian updating under risk
(as measured by violations of the martingale property in the risk control).

16For example, Cripps (2018) presents an axiomatic model of non-Bayesian updating
of objective probability distributions where prior beliefs need not equal the average of
posteriors because of under- or over-reaction to new information.
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Therefore, in interpreting the results, we take the association between viola-
tion of ROCL and ambiguity aversion as an empirical fact, and use it as an
indirect measure of ambiguity aversion.

4.3 Models

Section 3.2 showed that sensitivity to signal ambiguity is common, but not
universal. Decision-makers vary in their attitude to hard-to-interpret sig-
nals: some are close to the Bayesian benchmark, others are averse, while
the remainder like signal ambiguity. The goal of this section (and Appendix
B.1) is to demonstrate (in a non-exhaustive way) how some popular models
accommodate the various patterns of behavior and the associations among
behaviors documented in the experiment.
As emphasized, we explore choice given two di�erent information struc-

tures { no signals (unconditional), and then a particular signal structure
as de�ned above (conditional). Existing static models of ambiguity-sensitive
preference restrict attention to one �xed (implicit) information structure and
thus do not apply directly. Put another way, one could apply any of these
models separately to model �0 and each conditional order ��. Applied in
this way, received theories would not address updating in that they would
not restrict how unconditional and conditional preferences are related, ren-
dering (2.5), as well as many other patterns of unconditional and conditional
choices, rationalizable. We view this approach as conceding that received
theories are orthogonal to the issues considered here. We proceed instead by
examining whether extensions of these models that include plausible and/or
commonly used updating rules can accommodate signal ambiguity. Another
point to emphasize is that our treatment of models is intended to be illus-
trative rather than exhaustive. After examining the benchmark Bayesian
model, we focus on the maxmin model (Gilboa and Schmeidler 1989) with
two alternative updating rules. (See also Appendix B.2 for an examination
of the smooth ambiguity model.)
For all models, preferences are de�ned on a set F of Savage acts over

the state space S with outcomes in X. We maintain the binary structure,
assuming for the most part that S = fR;Bg, X = f100; 0g, F = ffR; fBg,
and that the signal space is � = f�R; �Bg, but arguments extend readily
to the general setup treated in Appendix A. Risk preferences are expected
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utility with vNM index u normalized by

u (100) = 1; u (0) = 0.

Utility functions on F , denoted V� (�), for � 2 f0g[� for unconditional and
conditional preferences respectively, are de�ned by probability equivalents:

V� (fR) = p�;R and V� (fB) = p�;B.

Symmetry (2.4) and signal diversity (2.2) are assumed throughout. We ex-
amine the capacity of models to accommodate (2.5) and its signal-ambiguity
seeking counterpart where the inequality is reversed.

4.3.1 Models with \Bayesian updating"

In the Bayesian model, unconditional utility has the subjective expected
utility (SEU) form with respect to prior belief m0,

V0 (f) =

Z
S

u (f) dm0 (s) , f 2 F .

Conditional utility V� (�) is given by SEU with respect to the posterior
m (� j �) which is derived by Bayesian updating using a likelihood function
` (� j s). Exclude the degenerate case where signals are uninformative and
assume that

` (�R j R) 6= ` (�R j B) ; (4.3)

this implies signal diversity. The well-known implication of this model is that

m0 (�) =
X
�

L (�)m (� j �) and

V0 (f) =
X
�

L (�)V� (f) , f 2 F , (4.4)

where

L (�) �
Z
S

` (� j s) dm0 (s) .

Therefore, by Lemma 1, indi�erence to signal ambiguity (that is, equality in
(2.5)) is implied.
Note that the preceding applies to any likelihood function ` (and more

generally, for any L consistent with (4.4)), just as the Ellsberg paradox is
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robust to which prior is assumed. In particular, it applies to two variants
of the above Bayesian model that have been explored in the literature. To
capture uncertainty about interpretation of signals, and hence about the true
likelihood function, Acemoglu, Chernozhukov and Yildiz (2016) assume that
updating of m0 is done using an average likelihood ` of the form

` (� j s) =
Z
` (� j s) d�s (`) ,

where, for each s, �s 2 �(� (f�R; �Bg)) is a subjective distribution over
likelihoods. Conclude that this speci�cation does not model hard-to-interpret
signals in the sense of the behavior we have identi�ed. In another variant,
it is assumed that the Bayesian agent uses the \wrong" likelihood function,
speci�cally, one in which signals are taken to be more precise than they
really are. Such agents are often called \overcon�dent" (Daniel, Hirshleifer
and Subrahmanyam 1998). We see that such overcon�dence is behaviorally
distinguishable from an a�nity to signal ambiguity.
Indi�erence to signal ambiguity is implied also in models that can ratio-

nalize (unconditional) Ellsbergian ambiguity aversion if a suitable \Bayesian-
like" updating rule is added. See Epstein and Seo (2015) for one such model.

4.3.2 Maxmin utility

Following Gilboa and Schmeidler (1989), ambiguity about S is represented
by a subjective setM0 � �(S), and unconditional utility is given by

V0 (f) = min
m2M0

Z
u (f) dm.

In the alternative scenario, the individual is informed that a signal will be
realized. Thus she contemplates uncertainty about f�R; �Bg � S, which
is modeled by a subset M of � (f�R; �Bg � S). We assume that M is
consistent with M0 in the sense that M0 equals the set of all S-marginals
of measures inM, that is,

M0 = fmrgS m : m 2Mg . (4.5)

After realization of the signal �, the individual updates her set of priors to
M� � �(S) and she evaluates acts using the conditional maxmin utility
function

V� (f) = min
m2M�

Z
u (f) dm.
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It remains to describeM and the setsM� in greater detail. We consider
two widely used update rules: prior-by-prior Bayesian updating (also known
as generalized Bayes' rule (GBR)), and maximum likelihood updating (ML),
whereby only those priors that maximize the likelihood of the realized signal
are retained and updated by Bayes' rule.17 We further divide the discussion
into two cases that highlight the main message regarding how to model signal
ambiguity within the framework of maxmin utility. (See Appendix B.1 for
supporting details.)

Single-likelihood : For each s, let ` (� j s) 2 �(f�R; �Bg) describe the distri-
bution of signals conditional on the true state satisfying (4.3). The critical
feature of this special case is that this conditional distribution, or likelihood
function, is unique as in Bayesian modeling. To incorporate this sharp view
of likelihoods, let M consist of all measures m on f�R; �Bg � S for which
the S-marginal lies inM0 and the S-conditional is `. Then, for both of the
noted updating rules, a�nity to signal ambiguity is implied (and the a�nity
is strict ifM0 is not a singleton).

Multiple-likelihoods : To sharpen the contrast with the preceding case, sup-
pose that unconditional beliefs about S are represented by the single (full
support) prior m0, that is, M0 = fm0g. Multiplicity arises at the level of
conditional distributions or likelihoods: let L denote a subjective set of pos-
sible likelihood functions `, where ` (� j s) 2 �(f�R; �Bg) for every s. De�ne
M to be the set of all measures m on f�R; �Bg�S for which the S-marginal
is m0 and, for which the S-conditional is an element of L. Then signal ambi-
guity aversion is implied for both updating rules. The intuition is apparent at
the functional form level: the multiplicity of likelihoods captures uncertainty
about how to interpret a given signal and permits the adopted interpretation
to vary with the bet being evaluated. For example, when evaluating the bet
on red (black), a signal � is interpreted conservatively in the way least (most)
favorable to red being drawn. This acts to reduce conditional utility levels
for each bet and each signal, consistent with (2.5).

Note that unconditional ambiguity aversion (satis�ed by single-likelihood
but not by multiple-likelihood as de�ned above) and signal ambiguity aver-

17Pires (2002) provides axiomatic foundations for GBR; Gilboa and Schmeidler (1993)
axiomatize ML in the special case where the maxmin model of preference with setM also
conforms with Choquet expected utility (Schmeidler 1989).
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sion (satis�ed by multiple-likelihood but not by single-likelihood) are inde-
pendent properties. Simultaneous aversion to both kinds of ambiguity can
be achieved by perturbing initial beliefs in the multiple-likelihoods model
slightly and takingM0 to be a small neighborhood of m0.

5 Conclusion

We provide a counterpart to Ellsberg's experiments, which focus on prior am-
biguity, by considering the response to information in environments where
information is available but is compatible with di�erent interpretations and
hence inferences. We suggest that such decision environments are common,
including, for example, the recent COVID-19 pandemic. After identifying
revealed sensitivity to hard-to-interpret information with failure of the mar-
tingale property of belief, we document experimentally that many subjects
respond in such a way to ambiguous signals.
As noted in the Introduction, attitude to signal ambiguity has attracted

signi�cant attention in applied work. Many of the cited papers are moti-
vated by introspection and interpretation suggested by the appearance of a
functional form, which may be tempting at �rst glance but are well-known to
be unreliable. Consistent with standard practice in decision theory, we o�er
de�nitions for attitudes towards signal ambiguity based on behavior that is
(in principle) observable and hence veri�able by an observer. The current pa-
per is the �rst attempt to provide such a de�nition, and is complemented by
an experimental study that demonstrates how to operationalize and identify
the proposed behavior in a lab setting, and that documents its pervasiveness
among the population of subjects.
This study utilizes two related, but distinct, choice environments on which

unconditional and conditional preferences are de�ned. The de�nition of sen-
sitivity to signal ambiguity relies on the DM not anticipating the signals at
the unconditional stage. This leaves the important research question of dy-
namic perception of signal ambiguity: when the DM anticipates receiving
the ambiguous signals, and the anticipation may contaminate the uncondi-
tional choice { both theoretically (e.g., through recursive evaluation), and
behaviorally (if the agent is not myopic). One can even imagine a dynamic
setting in which the dynamic structure itself is ambiguous { when the like-
lihood of receiving a signal is ambiguous. In these settings, it is challenging
to separate the updating component from prior beliefs. The current study
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proposes the �rst benchmark to identify sensitivity to signal ambiguity in
abstract setting, but we expect more work on new dimensions of ambiguity
of information structures.
We believe that the behavior identi�ed in the current study is natural in

interactive settings where inference is often made from the actions of other
agents whose rationality is uncertain. Though precise experimental identi�-
cation is challenging, the single agent environment studied here suggests that
non-Bayesian behavior in the form of deviations from the martingale prop-
erty could be a good starting point to measure agents' lack of con�dence in
others' reasoning.
Lastly, though not the main focus of the current study, the association

documented between ROCL and Bayesian updating in the risk control calls
for further study, both experimental and theoretical. We focused on the
marginal e�ect of signal ambiguity, but much of the literature on failure of
Bayesian reasoning deals with objective environments. The evidence herein
suggests new avenues to understand the vast behavioral literature on non-
Bayesian updating, drawing potential new connections to other choice do-
mains; for example, the form in which information is revealed (one-shot or
gradual), deviations from expected utility (both under risk and under uncer-
tainty), and preferences for the timing of resolution of uncertainty.
Moreover, most of the models we discussed in this paper did not account

for the relation between attitude to ambiguity and compound objective lot-
teries. If such a relation is a common element in behavioral responses to
ambiguity and updating, then it calls for a model that can account for the
three behaviors simultaneously.

A Appendix: A more general analysis

A.1 Primitives

� S: �nite (payo� relevant) state space

� �: �nite set of signals

� X: set of real-valued outcomes with largest and smallest elements (say
100 and 0)

� Acts f map S into X; F is a (�xed) �nite subset of acts
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� �(X): the set of all (simple) lotteries P

� Preferences �0 and f��g�2� on F [�(X)

Adopt the following basic assumptions on preferences:

Pref0 All preferences are complete and transitive.

Pref1 All conditional preferences agree with �0 in the ranking of lotteries.

Pref2 �0 restricted to lotteries conforms to expected utility theory.

Pref3 �0 is strictly FOSD-monotone on lotteries

Pref4 For each � 2 f0g [ �, and act f , 9 probability-equivalent p�;f , such
that P�;f = (100; p�;f ) �� f

Pref1 expresses the assumption that signals are unrelated to the objective
prospects (lotteries). Pref2 is almost universal in the decision theory lit-
erature focussing on ambiguity. Pref3 and Pref4 are self-explanatory and
common. These assumptions permit construction of utility functions V� (�)
for ��, � 2 f0g [�, where,

V� (f) = p�;f , for all f 2 F ,

and, for all P 2 �(X),

V� (P ) = p, where P �0 (100; p) .

These utility functions render meaningful the comparison of utility levels
unconditionally and across di�erent signals. In particular, the inequality

V�0 (f) > V� (f) , for given �
0 6= � 2 �,

is equivalent to the preference statement

[f ��0 P 0 and f �� P ] =) P 0 �0 P ,

It is interpreted to mean that �0 is a better signal for f than is �.

Remark 2 Finiteness of the set of acts F is not typical in axiomatic studies
but is entirely appropriate in underpinnings for experiments where one elic-
its risk equivalents of only �nitely many acts. The attitudes towards signal
ambiguity de�ned below depend on the empirically relevant set F .
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Refer to signal diversity (relative to F) if for some �1 2 �: For every
disjoint subsets �I ;�II � �nf�1g, at least one nonempty, 9f 2 F s.t.

p�;f > p�1;f if � 2 �I
p�;f < p�1;f if � 2 �II ,

that is, � is better (worse) than �1 for f if � 2 �I (�II). If � = f�1; �2g is
binary, then signal diversity reduces to: 9g; h 2 F s.t.

(p�2;g � p�1;g)(p�2;h � p�1;h) < 0

that is, �1 is better for one act and �2 is better for the other, as in (2.2).

A.2 Attitudes: de�nitions and characterizations

De�ne attitudes to signal ambiguity as follows (strict notions can be de�ned
in the obvious way).

De�nition 3 Weak aversion: There exists � 2 �(�) s.t.

V0 (f) �
X
�

��V� (f) for all f 2 F . (A.1)

Weak a�nity: There exists � 2 �(�) s.t.

V0 (f) �
X
�

��V� (f) for all f 2 F . (A.2)

Indi�erence: There exists � 2 �(�) such that

V0 (f) =
X
�

��V� (f) for all f 2 F . (A.3)

Intuition for these de�nitions is similar to that for (4.1). In the SEU
framework, when updating conforms to Bayes' rule, (A.3) reduces to the
familiar martingale condition relating prior and posterior beliefs. Our inten-
tion here is to identify it as a meaningful condition more generally where
preferences over acts are not necessarily SEU and beliefs are not necessarily
representable by probability measures.
The presence of the existential quanti�ers 9� raises two questions about

these de�nitions. First, is indi�erence equivalent to the conjunction of weak
aversion and weak a�nity? Second, and more practically, can the de�ning
conditions be veri�ed? The next theorem addresses these concerns.
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Theorem 4 (i) There is weak aversion to signal ambiguity i�

min
�2�

�Z
V� (f) d�

�
�
Z
V0 (f) d� for all � 2 �(F) . (A.4)

(ii) There is weak a�nity to signal ambiguity i�Z
V0 (f) d� � max

�2�

�Z
V� (f) d�

�
for all � 2 �(F) . (A.5)

(iii) There is indi�erence to signal ambiguity i� 8� 2 ba (F),18

min
�2�

�Z
V� (f) d�

�
�
Z
V0 (f) d� � max

�2�

�Z
V� (f) d�

�
. (A.6)

Assuming signal diversity, then: (a) indi�erence is also equivalent to the
conjunction of weak aversion and a�nity; and (b) � = (��) in the martingale
condition is unique.

In each case, the corresponding equivalent statement replaces the existen-
tial quanti�ers for � with more customary and preferable universal quanti�er
(see Section A.3 for how the reformulation aids veri�ability). The condition
(A.6) can be simpli�ed since the left-hand inequality is redundant given that
� is not restricted in sign. However, it is strictly stronger than the act-by-act
condition

min
�2�

V� (f) � V0 (f) � max
�2�

V� (f) for all f 2 F ,

which would be su�cient if in (A.3) we allowed � to vary with f . The
conjunction of (i) and (ii) is weaker than (A.3), because the former asserts
only existence of two measures, one for (A.1) and another, generally distinct,
measure for (A.2), while (A.3) asserts that there is a single measure satisfying
both inequalities. Accordingly, the characterization (A.6) is stronger than
the conjunction of (A.4) and (A.5) because the �s are not restricted to be
probability measures. However, under signal diversity, the conjunction of
weak aversion and weak a�nity is equivalent to indi�erence.19

18ba (F) is the set of signed measures on F . Given �niteness of F , it is isomorphic to
RjFj.

19The proof is elementary. For example, assume that (A.1) and (A.2) are satis�ed
with � and �0 respectively. Then

P
� 6=�1 (�� � �

0
�) (V� (f)� V�1 (f)) � 0 for all f , which

contradicts signal diversity unless � = �0 (take �I = f� 6= �1 : �� > �0�g and
�II = f� 6= �1 : �� < �0�g).
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Signal diversity also guarantees other desirable properties. For example,
de�ne strict attitudes by the obvious strict inequality counterparts of (A.1)
and (A.2). Then, for example, strict aversion (a�nity) and weak a�nity
(aversion) are disjoint if signal diversity is satis�ed.
Part (iii) of the theorem can be interpreted as providing an axiomati-

zation for the property (A.3) of updating and doing so for a very broad
class of preferences.20 There is arguably a rough parallel with Machina and
Schmeidler (1992). They generalize SEU and axiomatize probabilistically
sophisticated preferences { those for which underlying beliefs can be repre-
sented by a probability measure; and they do so without unduly restricting
other aspects of preference. We generalize the other main component of the
Bayesian model, namely Bayesian updating, and we axiomatize those collec-
tions fV�g�2f0g[� of preferences that satisfy the key martingale property of
Bayesian updating; and we do so without assuming maxmin or any other
parametric class of preferences, and without specifying a particular updating
rule beyond what is implicit in (A.3) or (A.6). Another parallel is that just
as probabilistic sophistication de�nes a benchmark for modeling sensitivity
to unconditional ambiguity of the sort highlighted by Ellsberg, we propose
(A.3) as a benchmark for modeling sensitivity to signal ambiguity.

A.3 Veri�ability

Here we show that the alternative characterizations (A.4) and (A.5) in The-
orem 4 provide a tractable way to check whether a given data set is consis-
tent with weak aversion or weak a�nity. By \data," we mean probability
equivalents elicited along the lines of our thought (and laboratory) experi-
ments. Utility values for each act are equal to the corresponding probability
equivalents{hence, it merits emphasis that the utility values appearing in
the theorem are observable. When a similar procedure is applied to check
for strict aversion, (using the obvious strict counterpart of the theorem), one
obtains a generalization of the inequality (2.5) which is the focus of the text.
That presumed a binary environment and the symmetry expressed by (2.4),
while these restrictions are not needed in Theorem 4.
Consider the practical value of the characterization (A.4) for verifying

20Condition (A.6) is a full-edged axiom because the utility values V� (f) are probability
equivalents and hence observable. Its interpretation is not clear however.
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(A.1): The former can be written as

max
�2�(F)

� (�) � 0,

where � (�) = min�2�
�R
V� (f) d�

�
�
R
V0 (f) d�. Finding a maximizer is a

matter of linear programming because � is piecewise linear.
To illustrate, consider the thought experiment and revert to earlier nota-

tion. Then

� (�) = min f�p�R;R + (1� �) p�R;B; �p�B ;R + (1� �) p�B ;Bg (A.7)
�(�p0;R + (1� �) p0;B)

The maximum is achieved at �� = 0; 1, or �c,

�c =
1

1 +
p�R;R�p�B;R
p�B;B�p�R;B

.

�c is that weight � for which the two terms inside the minimization in (A.7)
are equal:

�cp�R;R + (1� �c) p�R;B = �cp�B ;R + (1� �c) p�B ;B. (A.8)

Thus weak aversion is equivalent to � (�) � 0 at these three values of � and
hence (by brute calculation) to:

��p0;R + (1� ��) p0;B (A.9)

� min f��p�R;R + (1� ��) p�R;B; ��p�B ;R + (1� ��) p�B ;Bg ,
where

�� =

8>><>>:
0 p0;R � p0;B > p�R;R � p�R;B
1 p0;R � p0;B < p�B ;R � p�B ;B
1

1+
p�R;R

�p�B;R
p�B;B

�p�R;B

p�B ;R � p�B ;B � p0;R � p0;B
� p�R;R � p�R;B

(A.10)

Under the intuitive assumption

p�B ;R � p�B ;B < p0;R � p0;B = 0 < p�R;R � p�R;B, (A.11)

(A.9)-(A.10) are equivalent to the single inequality

p0;R �
p�B;B�p�R;B

(p�B;B�p�R;B)+(p�R;R�p�B;R)
p�R;R +

p�R;R�p�B;R
(p�B;B�p�R;B)+(p�R;R�p�B;R)

p�R;B.

If (A.11) is strengthened to symmetry (2.4), then �� = 1
2
and one obtains

the weak inequality form of (2.5).

36



A.4 Proof of Theorem 4

For vector inequalities, adopt the notation

x � y: xi > yi all i

x > y: xi � yi all i and x 6= y
x � 0: xi � yi all i

All vectors are column vectors unless transposed by superscript |.
We use Tucker's Theorem of the Alternative (Mangasarian 1969): Exactly

one of the following systems of inequalities has a solution:

(1) Bx > 0, Cx � 0, Dx = 0 (B nonvacuous)

(2) 0 = B|y2 + C
|y3 +D

|y4, y2 � 0, y3 � 0.

Purely for notational simplicity, let � = f�1; �2g and F = fg; hg be
binary; the reader will see that the argument is perfectly general.

Proof of (iii): If we denote by x the vector (1; ��1 ; ��2)
|, or as any positive

scalar multiple thereof, then existence of solution � satisfying (A.3) can be
restated as: 9x 2 R3 solving

Cx = 0, x > 0

where21

d| =
�
1 �1 �1

�
, C =

�
A
d|

�
, and

A =

�
A|g
A|h

�
, A|f =

�
V0 (f) �V�1 (f) �V�2 (f)

�
, f = g; h.

By Tucker's Theorem, the alternative is: 9y = (y2; y4) such that

y2 + C|y4 = 0, y2 � 0,

or equivalently C|y4 << 0, or equivalently (let y4 =
�
�g; �h; �0

�
):�

A| d
�
y4 � 0,

21Note that x > 0 and d|x = 0 imply that x1 > 0. Below keep in mind also that C is
3� (� + 1).
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24 V0 (g) V0 (h) 1
�V�1 (g) �V�1 (h) �1
�V�2 (g) �V�2 (h) �1

3524 �g�h
�0

35 << 0,
or equivalently: 9

�
�g; �h; �0

�
s.t.

�f�fV0 (f) + �0 < 0 and

�f�fV� (f) + �0 > 0 for all �

which is true i�

�f�fV0 (f) < ��0 < �f�fV� (f) for all �.

Conclude that the alternative is: 9
�
�g; �h

�
s.t.

�f�fV0 (f) < �f�fV� (f) for all �.

Therefore, (A.3) obtains i�: 8
�
�g; �h

�
�f�fV0 (f) � �f�fV� (f) for some �.

But taking ��, obtain also that: 8
�
�g; �h

�
�f�fV0 (f) � �f�fV� (f) for some �.

Combine to obtain: 8�,

min
�
�f�fV� (f) � �f�fV0 (f) � max

�
�f�fV� (f) .

Consider (iii.a). Assume that (A.1) and (A.2) are satis�ed with � and
�0 respectively, � 6= �0. Then

P
� 6=�1 (�� � �

0
�) (V� (f)� V�1 (f)) � 0 for all

f 2 F . Obtain a contradiction by taking �I = f� : �� � �0� > 0g and
�II = f� : �� � �0� < 0g in the de�nition of signal diversity,
Uniqueness follows similarly.

Proof of (i): Use notation from the preceding proof. x denotes the vector
(1; ��1 ; ��2)

|, or any positive scalar multiple thereof. We want a solution to

x > 0, Ax � 0, d|x = 0:

By Tucker's Theorem, the alternative is:

y2 + A|y3 + dy4 = 0,

y2 � 0; y3 � 0
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or, letting y3 =
�
�g; �h

�| � 0,24 V0 (g) V0 (h)
�V�1 (g) �V�1 (h)
�V�2 (g) �V�2 (h)

35� �g
�h

�
+

24 1
�1
�1

35 y4 � 0.

Thus (adding 1st and 2nd components, then 1st and 3rd) the alternative to
(A.1) is that 9

�
�g; �h

�| � 0 s.t.
�f=g;h�fV0 (f) < �f=g;h�fV� (f) for each �.

Conclude that (A.1) is equivalent to: 8
�
�g; �h

�| � 0,
�f=g;h�fV0 (f) � min

�
�f=g;h�fV� (f) .

The proof for (ii) is similar. �
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B Online Appendix

B.1 Details for the maxmin model

We provide some supporting details for the maxmin model de�ned in Section
4.3.2. Accordingly, S = fR;Bg and � = f�R; �Bg. Both symmetry (2.4)
and signal diversity (2.2) are assumed.

B.1.1 Maxmin with single-likelihood

We are given that ` (� j s) 2 �(�) for each s = R;B, satisfying (4.3). With-
out loss of generality, renaming signals if necessary, suppose that

` (�R j R) > ` (�R j B) . (B.1)

LetM0 � �(S) be compact and a non-singleton, and letM� �(�� S)
be constructed as in Section 4.3.2. Unconditional utilities are

V0 (fB) = min
m2M

m (B) = m� (B) , and

V0 (fR) = min
m2M

m (R) = m�� (R) .

By symmetry, the probability interval [m�� (R) ; 1�m� (B)] for red is sym-
metric about 1

2
and

V0 (fR) = m
�� (R) < 1

2
:

For any given m inM, its Bayesian update is

m (s j �) = [m (s) ` (� j s)] =Lm (�) , where

Lm (�) �
Z
` (� j s0) dm (s0) .

Prior-by-prior updating (GBR): Conditional utilities are given by, for
each � = �B; �R,

V� (fB) = min
m2M

m (B) ` (� j B)
Lm (�)

=
m� (B) ` (� j B)

Lm� (�)
.
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Therefore,

V0 (fB) = m�
0 (B) = m

�
0 (B) ` (�B j B) +m�

0 (B) ` (�R j B) =)
V0 (fB) = Lm� (�B)V�B (fB) + Lm� (�R)V�R (fB) . (B.2)

Similarly for R,

V0 (fR) = Lm�� (�B)V�B (fR) + Lm�� (�R)V�R (fR) . (B.3)

In addition, because maxm (B) = m�� (B) > m� (B) = minm (B),

Lm� (�B) = m�
0 (B) ` (�B j B) +m�

0 (R) ` (�B j R)
< m��

0 (B) ` (�B j B) +m��
0 (R) ` (�B j R) = Lm�� (�B) .

By (B.1),
V�B (fB) > V�R (fB) and V�R (fR) > V�B (fR) . (B.4)

Therefore, from (B.2), (B.3), and (B.4),

V0 (fR) < Lm� (�B)V�B (fR) + Lm� (�R)V�R (fR) , and

V0 (fB) < Lm�� (�B)V�B (fB) + Lm�� (�R)V�R (fB) .

Combine these with the equalities (B.2) and (B.3) to obtain

V0 (fs) <
X
�

��V� (fs) , s = R;B,

where �� =
1
2
Lm� (�)+ 1

2
Lm�� (�). This proves strict signal ambiguity a�nity.

Maximum likelihood updating (ML): Conditional on each realized sig-
nal �, one retains only those measures inM that maximize the probability of
�. Each is updated by Bayes' rule and the minimum conditional probability
of s, s = R;B, de�nes the conditional utilities V ML

� (fs). Since the minimum
is taken over a smaller set than under GBR, it is immediate that, for each �
and s,

V ML
� (fs) � V�(fs). (B.5)

Unconditional utilities are identical for the two updating rules. It follows
that there is signal ambiguity loving also under ML.
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B.1.2 Maxmin with multiple-likelihoods

We haveM0 = fm0g. By symmetry for unconditional utility,

m0 (R) = m0 (B) =
1
2
.

Let the nonsingleton set L be such that ` (� j s) > 0 for every �; s, and ` 2 L.
Each likelihood is determined by a pair (` (�R j R) ; ` (�R j B)) 2 [0; 1]2. Thus
L can be identi�ed with a subset of the unit square (it is assumed compact).
Prior-by-prior updating (GBR): Aversion to signal ambiguity follows
from (B.5) and the result below for ML.

Maximum likelihood updating (ML): The priors maximizing the likeli-
hood of � are obtained by combining m0 with every ` in L�,

L� = argmax
`2L

L` (�) , L` (�) � �s` (� j s)m0 (s) .

Utilities are given by

V� (fs) = 1
2

min`2L� ` (� j s)
L� (�)

, s = R;B,

L� (�) = max
`2L

L` (�) .

Therefore, using symmetry (2.4),

V�R (fR) + V�B (fR) = V�R (fR) + V�R (fB)

=
1

2L� (�R)

�
min
`2L�R

` (�R j R) + min
`2L�R

` (�R j B)
�

� 1

2L� (�R)
min
`2L�R

[` (�R j R) + ` (�R j B)]

=
min`2L�R [` (�R j R) + ` (�R j B)]
max`2L [` (�R j R) + ` (�R j B)]

� 1,

which implies the weak-inequality counterpart of (2.5). �

B.1.3 A numerical example

The following numerical example may further clarify the intuition for our
behavioral de�nitions and how they di�er from interpretations suggested by
the appearance of functional form.
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Consider two possible joint distributions on �� S, �1 and �2, given by

�1 (�R; R) = �2 (�B; B) =
3

8
, �1 (�R; B) = �2 (�B; R) =

1

8

�1 (�B; B) = �2 (�R; R) =
1

2
, �1 (�B; R) = �2 (�R; B) = 0.

Suppose that DM is a maxmin agent and that conditional on each signal
realization she uses the posteriors implied by Bayesian updating, namely the
set of posteriors for R equal toM�R = f34 ; 1g andM�B = f0; 14g conditional
on �R and �B respectively. Thus p�R;R = 3

4
and p�B ;R = 0. The joint

distributions imply the set of priorsM0 = f38 ;
5
8
g for R. If this is the set of

priors used by DM at the ex ante stage, then p0;R =
3
8
and, contrary to (2.5),

p0;R =
1
2
p�R;R +

1
2
p�B ;R,

which we interpret as indi�erence to signal ambiguity (Appendix A). In con-
trast, the non-singleton sets of posteriors and the aversion to ambiguity built
into the maxmin model would seem to suggest aversion to signal ambiguity.
We have two reactions to the critique of our martingale approach im-

plied by the preceding. First, interpretations suggested by the appearance of
functional forms may be tempting at �rst glance, but are well-known to be
unreliable.
Second, we feel that the designation of signal ambiguity neutrality in the

above example is intuitive. The set M0 of priors can be viewed as being
constructed by backward induction, pasting together the indicated sets of
posteriors with prior beliefs about signals (here each signal has probability
1
2
); similarly for the associated conditional and prior utilities of the bets on R
and B. Thus the prior utilities of DM, modeled by the example, are identical
to those that would apply to an individual who foresees the signal structure
and uses backward induction reasoning. Given that (by assumption) our DM
does not foresee the signal structure at the prior stage, the above speci�cation
seems less natural than in a dynamic setting. In fact, it is very special in that
when applied to our DM, it implies that nevertheless her behavior is (as if)
she could foresee. In other words, revealing the signal structure (including
its ambiguity) to DM at the prior stage would not a�ect her prior probability
equivalents p0;R and p0;B, suggesting indi�erence to signal ambiguity.
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B.2 Smooth ambiguity

Consider the smooth model (Klibano�, Marinacci and Mukerji 2005) adapted
as follows. For concreteness and simplicity only, adopt the setting in the
experiment. Accordingly, take S = fR;Bg and � = f�R; �Bg. Denote
by n = 1 or 9 the possible number of red balls in the payo� urn and by
mn 2 �(S) the corresponding probability distribution for the color drawn
from the payo� urn (mn (R) = n=10). At the unconditional stage, before
becoming aware of the signal structure, uncertainty about n is represented
by �0 2 �(f1; 9g); since equal probabilities are announced to subjects, take
�0 (1) =

1
2
, though any subjective prior would do equally. Her unconditional

utility function is V0 given by

� � V0 (f) = �(p0;f ) =
Z
f1;9g

�

�Z
S

u (f) dmn

�
d�0 (n) , (B.6)

for f = fR; fB, where � (�) is (strictly) increasing. Unconditional ambiguity
aversion is modeled by taking � concave.
In the alternative scenario, the individual is informed about the signal

structure, (where N = 0 or 45 balls of each color are added when construct-
ing the signal urn), and that a signal, either �R or �B, has been realized.
Inferences about the payo� urn composition depend on beliefs about both
n and N represented by the measure � 2 �(f1; 9g � f0; 45g). The only
restriction on � is that the marginal probability � (n) satisfy

� (n) = �0 (n) , n = 1; 9. (B.7)

The likelihood of each signal � given any pair (n;N) is well-de�ned (e.g.
L (�R j n = 9; N = 45) = L (�B j n = 1; N = 45) = 54=100), which permits
Bayesian updating to � (� j �). Conditional utility is de�ned by

� � V� (f) = �(p�;f ) =
Z
f1;9g�f0;45g

�

�Z
S

u (f (s)) dmn (s)

�
d� (n;N j �) .

(B.8)

Remark 5 Following Klibano�, Marinacci and Mukerji (2009), one might
replace mn (s) above by mn (s j �;N). However, the natural assumption is
that draws from the payo� and signal urns are independent conditional on
(n;N). Therefore, mn (s j �;N) = mn (s j N) = mn (s), and we are back to
(B.8).
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The utility functions in (B.6) and (B.8), plus (B.7), constitute a version
of the smooth model for our setting. De�ne L� (�) by

L� (�) = �n;NL (� j n;N)� (n;N) .

Then it follows from the martingale property of Bayesian updating that

�(p0;f ) = L� (�R)�(p�R;f ) + L
� (�B)�(p�B ;f )

� � (L� (�R) p�R;f + L
� (�B) p�B ;f ) =)

p0;f � L� (�R) p�R;f + L
� (�B) p�B ;f ,

which, by Lemma 1 (and its obvious extension to weak inequalities), is equiv-
alent to (weak) signal ambiguity loving. Conclude that unconditional (Ells-
berg) ambiguity aversion implies signal ambiguity loving.
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B.3 Experimental results

B.3.1 Experimental results for all subjects

Risky Signal Ambiguous signal Total

# % # % # %
p0 < :475 30 44.1 42 48.84 72 46.75
:475 � p0 � :525 32 47.1 37 43.02 69 44.81
:525 < p0 6 8.8 7 8.14 13 8.44
Total 68 100 86 100 154 100

Table B.1: Unconditional probability equivalents to 2-point compound risk
for all subjects

There is no evidence of di�erential assignment to treatments based on
unconditional PE (Fisher exact test p-value is .831).
The increase in the incidence of non-Bayesian behavior as a response to
hard-to-interpret signals is signi�cant at the 5% level (p-values of one-sided
proportion test and one sided Fisher exact test are .016 and .024, respec-
tively).
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Figure B.1: Bayesian behavior and attitude to signal ambiguity - all subjects
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Risky Signal ROCL
Bayesian Yes No Total

Yes 21 11 32

No 11 25 36

Total 32 36 68

Ambiguous Signal ROCL
Bayesian Yes No Total

Yes 19 7 26

No 18 42 60

Total 37 49 86

Table B.2: Frequencies in the risky signal control (left) and ambiguous signal
treatment (right). Bayesian (rows) is approximately satisfying Bayes rule
(left) and being approximately neutral to signal ambiguity (right). ROCL
(columns) is having unconditional PE of approximately 0.5. p-value of Fisher
exact test is .007 inthe risk control and smaller than .001 in the ambiguous
treatment.

B.3.2 Approximate Bayesian
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Figure B.2: CDF of Bayesian updating

Figure B.2 plots the di�erence in the distributions of our proposed mea-
sure for Bayesian behavior (3.2) between the risky-signal control (green full
line) and the ambiguous-signal treatment (dashed line). A value of \0" on the
horizontal axis implies that the unconditional PE equals the average of the
two conditional PEs, that is { the subject is exactly Bayesian. The interval
between the two vertical dashed lines is the 5% interval: [�2:5%;+2:5%] in
which we classify subjects as approximate Bayesian. Subjects that are to the
left (right) of the interval have PEs that indicate that they are averse (seek-
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ing) to signal ambiguity. As can be easily seen from the �gure, our �ndings
reported in the paper are independent of the exact de�nition of \approximate
Bayesian".

B.4 Experimental interface

B.4.1 Risk control
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B.4.2 Ambiguous-signals treatment

Below are only the screens that are di�erent in the ambiguous signal treat-
ment
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