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Abstract

In the leading model of bounded rationality in games, each player best-

responds to their belief that the other players reason to some finite level.

This paper investigates a novel behavior that could reveal whether the

player’s belief lies outside the iterative reasoning model. This encompasses a

situation where a player believes that their opponent can reason to a higher

level than they do. We propose an identification strategy for such behavior,

and evaluate it experimentally.
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1 Introduction

The leading models of bounded rationality in games, as level-k and cognitive

hierarchy, are iterative ‘top-down’ models of reasoning: a player with a finite level

of reasoning believes others can reason to a strictly lower level and best responds

to that belief. This restriction is critical in how the model is operationalized –

it ensures that a player requires only a finite number of steps of reasoning to

optimally respond to their belief. Importantly, a player who can do k steps of

iterated reasoning (i.e., k steps of “I think, you think, I think, ...”) can only

model others as being capable of doing at most k→ 1 steps of iterated reasoning.1

This ability to model the behavior of others is a key assumption in these models.

This, however, leads to a natural and interesting question: what happens if a

player believes others may reason to a higher level than they do? For example,

how will a player respond if they believe that their opponent is more sophisticated

than them?

We propose a behavior that reveals to an analyst that Ann, who is playing a

game with Bob, is reasoning about Bob’s behavior outside of the iterative ‘top-

down’ model of reasoning. We then implement a novel experimental design that

allows us to identify this behavior experimentally and evaluate its pervasiveness

in the population. We also investigate whether Ann’s behavior depends on Bob’s

observed characteristics that may be correlated with his sophistication.

Recall that in iterative ‘top-down’ reasoning models players’ beliefs are an-

chored in the behavior of a specific non-rational L0 type, and types are hetero-

geneous in their level of reasoning. The L1 type performs one level of reasoning

and best responds to the L0 type. In turn, the L2 type performs two levels of

reasoning and best responds to some belief over L0 and L1 types, and so on with

the Lk type best responding to some belief over L0, ..., L(k → 1) types. But how

would Ann behave if she believed that Bob may be more sophisticated than her?

Within the prism of the iterative ‘top-down’ model of reasoning, it implies that

1Any player who can reason about their opponent doing m steps must necessarily be able to do
at least m+ 1 steps of reasoning themselves.
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although she would believe that Bob is rational (since she is rational), she will

not be able to model his behavior. Still, Ann’s behavior would be consistent with

2-rationalizability, which allows all actions that are consistent with rationality and

belief in others’ rationality.

We design two diagnostic games that allow the analyst to identify this behavior.

The first is a dominance-solvable game (“DS”) in which Bob has a dominant

strategy. This game permits the analyst to identify if Ann “believes that Bob is

rational.” Using the second game – which we refer to as the iterative-reasoning

game (“IR”) – the iterative ‘top-down’ model of reasoning together with belief

in rationality makes the sharp prediction that Ann would value IR strictly more

than DS. However, if Ann only believes that Bob is rational, but her reasoning

process is not captured by the model (but is consistent with 2-rationalizability),

she may value DS more than IR. Importantly, these inferences do not depend

on Ann’s risk or social preferences. This results in a conservative estimate of

the proportion of participants who are inconsistent with the iterative ‘top-down’

model of reasoning.

Our identification strategy uses a more general anchor than the standard L0

type. We consider a rational, but non-strategic, L1 type to anchor the iterative

‘top-down’ model of reasoning. This player concentrates only on their own payo!,

without making any strategic considerations. This increases the set of possible

actions that are consistent with the L1 type, includes the “standard” L1 type

(who best-responds to uniform play of the L0 type), and accommodates other

focal behaviors.

Our test to identify if Ann’s behavior is consistent with the prediction of a

generalized iterative reasoning model may be extended to the case where Ann

may not believe that Bob is rational, if the form of irrationality considered is a

random choice of action by Bob (a uniform play by the L0 type, as is typical in

many models). In this case, the ranking of the DS and IR games is unaltered.

The novel experimental design that we employ has four components. The first

are the two diagnostic games: IR and DS. The second are two control games that
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rule out other confounding factors that can contribute to preferring DS over IR.

Third, we investigate whether participants’ reasoning process (iterative ‘top-down’

models of reasoning or 2-rationalizability) depends on their opponents’ observed

characteristics. To achieve this, we exogenously vary the participants’ opponent

type: they face either a Ph.D. student in Economics or an undergraduate student

of any discipline. The fourth component is a preference-elicitation mechanism

over the games. Rather than directly eliciting a choice between the two diagnostic

games, participants first choose their actions in each game (and against each po-

tential opponent), and then we elicit their respective valuations.2,3 This allows the

analyst to infer both participants’ preferences between the two diagnostic games

and participants’ (confidence in their) beliefs about their opponents’ behavior.

Moreover, we can exploit the valuation data to isolate those participants who

believe that their opponent is rational, as the predictions in our games are the

starkest for this subset of participants.

We find that approximately half of the choices made by participants are in-

consistent with the iterative ‘top-down’ model of reasoning, especially for those

who believe that their opponents are rational – where the model’s predictions are

inconsistent with 64% of choices. Moreover, approximately 72% of participants

exhibit a stable model of reasoning irrespective of the opponent’s characteristics.

Among the remainder, the results are split: roughly 12% make choices consistent

with iterative ‘top-down’ reasoning against an undergraduate but not against a

Ph.D. student, while roughly 16% exhibit the opposite pattern.

Pioneering scholarly contributions in the iterative ‘top-down’ reasoning liter-

ature include Nagel (1995), Stahl and Wilson (1994; 1995), Costa-Gomes, Craw-

ford, and Broseta (2001), Camerer, Ho, and Chong (2004), and Costa-Gomes and

Crawford (2006). For a review of this literature, see Crawford, Costa-Gomes, and

2Heinemann, Nagel, and Ockenfels (2009), Coricelli and Nagel (2009), and Nagel, Brovelli, Heine-
mann, and Coricelli (2018) use a related strategy to elicit certainty equivalents in coordination
games; however, in their context, the elicited valuations a!ect both the payo!s in the games
and their value.

3To allow participants to recall their reasoning in the valuation stage, we encouraged them to
write it down in a text box. We use this information to gather further qualitative evidence on
their choice process.
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Iriberri (2013). By construction, these papers do not consider the questions we

investigate here.

Arad and Rubinstein (2012a) and Kneeland (2015) developed novel experi-

mental designs to identify levels of reasoning in an iterative model. Moreover, in

the former design, the authors explicitly asked participants about their thought

process when making their choices to gain a better understanding of participants’

behavior. Arad (2012) proposed a new allocation game to study iterative reason-

ing and the performance of the level-k model, and showed that level-k thinking

accounts for a smaller number of choices made by participants than in other ex-

periments. Further, Arad and Rubinstein (2012b) studied how participants reason

iteratively on few dimensions, or features, in an allocation game (Colonel Blotto).

Subsequently, Arad and Penczynski (2024) studied some other environments of

resource allocation with communication between participants, and confirmed that

many participants engage in multi-dimensional iterative reasoning.

Also related to our work is Agranov, Potamites, Schotter, and Tergiman (2012)

who manipulated participants’ beliefs about the cognitive levels of the players they

are playing against; and Alaoui and Penta (2016) who studied a model of iterative

reasoning where player’s depth of reasoning is endogenously determined. More re-

cently, Alaoui, Janezic, and Penta (2020) further developed an experimental design

strategy to distinguish level-k behavior driven by participants’ beliefs from their

cognitive bounds, and found an interaction between participants’ own cognitive

bound and reasoning about the opponent’s reasoning process. Gill and Prowse

(2016) investigated how cognitive ability and character skills influence the evolu-

tion of play in repeated strategic interactions and estimate a structural model of

learning based on level-k reasoning. Georganas, Healy, and Weber (2015) examine

whether the level-k model generates reliable cross-game testable predictions at the

individual player level, and find that observed levels are mostly consistent within

one family of similar games, but not across families of games.

Our work also draws on the epistemic game theory literature, particularly in

how it approaches strategic uncertainty – that is, uncertainty about the play of
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others. A key element of our experimental design is the use of the 2-rationalizable

solution concept as our alternative model of behavior, i.e., how people behave

when they are reasoning outside of the iterative ‘top down’ model.

In the iterative top-down approach, strategic uncertainty arises indirectly in

three ways. First, through assumptions about L0 behavior (e.g., if L0 types are

assumed to choose actions uniformly at random, then L1 types face uncertainty

about others’ play). Second, through uncertainty about others’ reasoning levels;

and third, through uncertainty about others’ risk preferences. For the latter, if

players di!er in their levels of reasoning or in their risk preferences, their optimal

actions may di!er, implicitly generating strategic uncertainty about the play of

others.

In contrast, the epistemic approach models strategic uncertainty explicitly, re-

stricting it only through epistemic conditions such as rationality and beliefs in

others’ rationality. The 2-rationalizable solution concept captures this by allow-

ing a wide range of beliefs consistent with these conditions, rather than relying on

ad hoc assumptions about L0 behavior, levels of reasoning, or preference hetero-

geneity.

Our experimental design is constructed to isolate and control for the three

sources of strategic uncertainty accounted for by the iterative ‘top down’ model

of reasoning. This allows us to identify behavior that falls outside the predictions

of the iterative ‘top down’ model but is consistent with 2-rationalizability. Put

di!erently, our design allows us to observe behavior that reflects the broader and

more explicit conception of strategic uncertainty embedded in the 2-rationalizable

model, but not captured by the iterative ‘top-down’ model of reasoning.

Our findings highlight the importance of the epistemic approach. They suggest

that explicitly modeling strategic uncertainty may capture observed behavior that

implicit treatments via modified iterative ‘top-down’ models are inconsistent with.

This complements earlier works that contrast the explicit approach of epistemic

game theory and other implicit modeling approaches across domains, including

auctions (Battigalli and Siniscalchi 2002, Dekel and Wolinsky 2003, Kosenkova
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2019), bargaining (Friedenberg 2019), and identifying levels of reasoning (Bran-

denburger, Friedenberg, and Kneeland 2020).

The paper proceeds as follows. Section 2 introduces the design and the set

of diagnostic games as well as the two control games. It builds the theoretical

background necessary for our experiment – discussed in Section 3 – and the iden-

tification strategy used in the analysis carried out in Section 4. Section 5 o!ers a

more formal analysis. Finally, Section 6 concludes with a brief discussion of the

results. The Appendix contains further analyses, details on participants’ individ-

ual behavior, the experimental instructions, and screenshots of the experimental

interface.

2 The Design

We employ both an iterative ‘top-down’ model of reasoning, based on level-k

and cognitive hierarchy, and the solution concept of 2-rationalizability to guide

our experimental design, identification strategy, and analysis. We provide a brief

description of the model and the concept here and engage in a discussion on how

these interact with our setup in the next subsection. A more formal and general

analysis is provided in Section 5.

2.1 Building Intuition: Model and Solution Concept

Iterative ‘top-down’ model of reasoning In this model, players anchor their be-

liefs in a näıve model of others’ behavior and adjust their beliefs by a finite num-

ber of iterated best-responses. To date, these models have been anchored in an

“irrational” (L0) player-type who either plays each strategy with equal chance

or chooses some salient action, depending on the application. Players of level-k

(k > 0) are rational in the sense of best-responding to their beliefs, but players of

di!erent k di!er in their beliefs over the action(s) played by their opponents.

We consider a more general model of reasoning, with a di!erent cognitive in-

terpretation of L1. Instead of conducting a “standard” level-k analysis, our goal

7



is to give the iterative ‘top-down’ approach the best possible chance of success by

considering the most general model. Our model is anchored in the behavior of a

non-strategic L1 type who makes decisions based solely on their own-payo! infor-

mation. To build intuition for this type, consider a decision maker who chooses

an action to allow for the possibility of achieving the highest possible payo! in a

given game, or alternatively, chooses an action to maximize their average payo!.

In both cases, the decision maker is non-strategic as they never form beliefs about

their opponents’ behavior. Nevertheless, their behavior may very well reflect their

own payo! information and primary focus therein. If one views their choice of

action independently of the strategic environment, L1-choices could be viewed as

“rational.” Since there are many possible criteria a decision maker could employ to

determine their action choice, selecting an action in order to ensure the maximum

or the average payo! being just two examples, we will use a partial-order approach

to formalize this behavior.4 E!ectively, as long as an action is optimal under some

own-payo! criteria, we would allow our non-strategic type (L1) to play it.5

Since we want to capture all reasonable own-payo! criteria that our decision

maker could use, the only assumptions we impose are that the criteria must be

non-strategic in nature, and respect the notion that higher payo!s are preferred,

i.e., strict monotonicity. Consider two payo! vectors xxx = (x1, . . . , xn) and yyy =

(y1, . . . , yn) such that xxx is greater than yyy; that is, xi ↑ yi for all i ↓ {1, . . . , n}

with strict inequality for at least one i. In this case, it seems clear that xxx should

be preferred to yyy if our decision maker prefers higher payo!s. Further, since we

are trying to capture the behavior of a non-strategic type, we should ignore any

information contained in the ordering of the payo! vectors, as any concerns for

ordering would reflect strategic considerations. Thus, we propose the following

partial order ↔1: xxx is preferred to yyy if there exists a permutation of xxx that is

4Text data collected indicates that “average” and “maximum” payo! are terms with relatively
high Term Frequency-Inverse Document Frequency scores, a numerical statistic that is intended
to reflect how important a word is to a comment in a collection.

5Coricelli and Nagel (2009) as well as Nagel, Brovelli, Heinemann, and Coricelli (2018) found
that players who do not engage in high-level strategic thinking have similar brain activation
to decision makers who make risky decisions in non-strategic environments, providing physical
support to our typology of L1 as rational but non-strategic.
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greater than yyy. We then allow our non-strategic type to play any action that is

undominated according to ↔1.

Notice that the binary relation ↔1 is not, in general, complete. For example,

consider two payo! vectors aaa = (20, 0, 10) and bbb = (12, 8, 16). Here, neither aaa

is preferred to bbb nor bbb is preferred to aaa. This reflects the fact that strategy a

might be optimal under one criteria (e.g., it has the highest payo!), yet strategy b

might be optimal under another criteria (e.g., it has the highest arithmetic mean).6

Alternatively, consider the two payo! vectors ccc = (20, 9, 14) and ddd = (12, 8, 16)

that are comparable according to ↔1; that is, ccc is preferred to ddd.

In general, the partial order ↔1 incorporates many potential own-payo! heuris-

tics that seem both intuitive and reasonable. The set of actions an L1 type will

choose from – the actions that are undominated through ↔1 – must always contain

an action that leads to the highest payo!, an action with the highest minimum

payo!, as well as the action with the highest arithmetic mean.7 Further, notice

that the action with the highest arithmetic mean is equivalent to the action that

maximizes a player’s expected payo!s under the belief that others’ play each ac-

tion with equal probability. As such, our approach nests the standard level-k and

cognitive hierarchy models as a special case as they typically assume that the L0

type plays uniformly random.8

The behavior of all higher types is then anchored in the behavior of the L1

type. A level-2 (L2) type assumes that all other players are the L1 type and

chooses accordingly a strategy that maximizes their expected utility under some

probability distribution over L1 strategies.9 A level-3 (L3) type assumes that all

other players are either L1 or L2 types and chooses a strategy that maximizes

their expected utility under some probability distribution over both L1 and L2

6Note that probabilistic beliefs on the actions chosen by others, as is assumed in the literature
to date, induces a complete ranking on the player’s actions.

7All three of these own-payo! heuristics were shown to have explanatory value as part of a focal
L0 type in Wright and Leyton-Brown (2014).

8Moreover, our approach also nests many special cases of non-strategic behavior proposed in the
level-k literature to express notions of ‘focal points’ such as playing 20 in Arad and Rubinstein
(2012a)’s 11-20 game. Hence, in the current setup, the L1 type will play that strategy but
beyond relabelling of levels – nothing will change.

9Most iterative reasoning applications assume that players are risk-neutral and hence maximize
expected payo!s. Importantly, we allow instead for any expected-utility preferences.
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strategies. This process continues for higher-level types ad infinitum and, more

generally, with Lk types choosing a strategy that maximizes expected utility given

some belief over the play of strictly lower types.

2-rationalizability This solution concept can be intuitively understood via its re-

lationship with the notion of rationality and reasoning about rationality. A player

is rational if they play a best-response – maximize expected utility – given their

subjective belief about how the game is played. A player believes in rationality if

they believe that others are rational. That is, if they believe others are playing

a best-response given their subjective beliefs about how the game is played. The

solution concept of 2-rationalizable strategies incorporates both the assumption

of rationality and belief in rationality.10 The 2-rationalizable set is found by first

finding the set of 1-rationalizable actions for each player. These are the actions

played by a rational player: any action that maximizes a player’s expected util-

ity given some utility function and some belief about the play of others. The

2-rationalizable set comprises of all actions played by a rational player who be-

lieves others play actions in the 1-rationalizable set: any action that maximizes

a player’s expected utility given some utility function and some belief over the 1-

rationalizable play of others. This solution concept is formally defined in Section

5.

Iterative ‘top-down’ model of reasoning and 2-rationalizability In the following,

we highlight the relationship between the model and the solution concept intro-

duced above. To start, notice that the iterative ‘top-down’ model of reasoning

implicitly imposes assumptions about how types reason about rationality. We

highlight three facts. First, all types with k ↑ 2 are rational as they best respond

to their beliefs about the play of others. Second, even though the L1 type cannot

be considered rational in the game-theoretic sense as they are non-strategic and

do not form beliefs about others’ strategies, they nevertheless do play actions that

10The relationship between reasoning about rationality and k-rationalizable strategies follows
from standard results, e.g., Bernheim (1984), Brandenburger and Dekel (1987), and Tan and
da Costa Werlang (1988) among others.
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are consistent with rationality. That is, any action that is undominated by ↔1 is

also a best response to some belief about others’ play under some expected utility

preferences. Third, the behavior of any Lk type with k ↑ 2 is consistent with the

assumption of belief in rationality. This result follows naturally since any such

type believes that the behavior of others is, in fact, consistent with rationality.11

Further notice that the iterative ‘top-down’ model of reasoning imposes an ad-

ditional assumption beyond reasoning about rationality. It imposes the assumption

that beliefs are anchored in non-strategic play. Put di!erently, the L2 type can-

not hold arbitrary beliefs about the play of the game. Rather, they must hold

beliefs consistent with L1 play. While we use a generous definition of L1 play here

to allow for a broad notion of non-strategic behavior, in many games this set of

actions may still be small, even a singleton set. As such, one can interpret the L2

type here as a type that can model the play of others. Naturally, the same holds

for higher levels. The L3 type that believes others are either L1 or L2 types can-

not hold arbitrary beliefs about others’ rational play, but rather must hold beliefs

that are consistent with L1 or L2 play, and so on. Therefore, one can interpret

the iterative ‘top-down’ model of reasoning as assuming that players in fact can

model the play of others.

This is in sharp contrast to the concept of 2-rationalizability. This approach

is grounded in the assumption that players can hold any beliefs about the play

of others, and only requires those beliefs to be consistent with the assumption

that others are rational. The assumption of rationality is less stringent than that

imposed by L1 play. In this sense, 2-rationalizability can be interpreted as relaxing

the assumption that players possess the ability to model the play of others, in

contrast to iterative ‘top-down’ models of reasoning.

Key design assumptions In what follows, we will assume that players are strate-

gic. For the iterative ‘top-down’ model of reasoning, this means that we will focus

on the behavior of Lk types for k ↑ 2 and not the non-strategic L1 players. This

11Notice that the model can easily be generalized if one wishes to allow for uncertainty over
others’ rationality by simply introducing an additional non-strategic type that randomizes
uniformly over the set of actions. We shall discuss this in more detail in Section 5.
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restriction is motivated by our main research question – whether players can model

the play of others. This question is not applicable to non-strategic players who,

by definition, do not reason about the play of others. Moreover, players who are

rational and believe in rationality will play a key role in our design. As we assume

that players themselves are rational since our focus is on types with k ↑ 2, and

investigate if they believe that others may be more sophisticated than them, it is

natural to at least require them to believe that others are rational – even if they

cannot model their behavior. As such, our design will make stark predictions for

those participants who are rational and believe in rationality of others.

Recent work (Alaoui and Penta 2016; 2022, Alaoui, Janezic, and Penta 2022;

2025) demonstrates that individuals’ levels of strategic reasoning can vary de-

pending on the context or the structure of the game. This is consistent with the

findings of Georganas, Healy, and Weber (2015), who also emphasize the sensitiv-

ity of reasoning levels to contextual factors. An important question then is: How

sensitive is our design to the assumption that players’ reasoning levels remain con-

stant across the games? The answer is that our design is largely insensitive to such

type changes across games. The only notable exception occurs when a player’s

type changes from an Lk type with k ↑ 2 to a type with k ↗ 1. Importantly,

however, none of the above studies suggest that rational players become L0 under

di!erent game structures, so this would be an extreme version of having a wrong

belief. Further, this kind of shift is not predicted by the endogenous depth of

reasoning model applied in Alaoui and Penta (2016; 2022) and Alaoui, Janezic,

and Penta (2022, 2025).12 Thus, overall, we view our design as not dependent on

the assumption that players’ levels of reasoning remain fixed across games.

2.2 The Games

In order to identify behavior that reflects the player’s belief that other players

may be rational, but their behavior cannot be modeled, we judiciously designed

two diagnostic games. One, where the ability to model the opponents’ behavior

12For more details, see the discussion on page 39.
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is important for how the participant values the game, and the other, where such

an ability is less important.

The strategic form of these games is depicted in Figure 1.
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Figure 1: The Iterative-Reasoning Game (IR) and the Dominance-Solvable Game
(DS).
In every cell, Player 1’s payo! is displayed in the lower left, and the payo! to
Player 2 is on the upper right.

The iterative-reasoning game “IR” The iterative ‘top-down’ model of reasoning

predicts that Player 1 chooses an action in {a, b} and Player 2 chooses an action

in {B,C}. To gain intuition, consider first the simple case where for all k ↑ 2, Lk

type believes that the others are L(k→1). Recall that Player 1 of type L1 considers

their own payo!s but is non-strategic. This player chooses between the payo!

vectors aaa = (0, 12, 13, 11), bbb = (4, 14, 0, 6), ccc = (10, 0, 11, 12), and ddd = (13, 8, 6, 0).

Thus, the L1 type plays actions a or b, as actions c and d induce payo!s that are

dominated by a permutation of a’s payo!s. Either action a or b could be a natural

focal action: action a is associated with the highest arithmetic mean, while action

b is associated with the highest payo!. Similarly, Player 2 of level-1 plays action

C. This action dominates all other actions according to ↔1: it contains the highest

arithmetic mean and highest payo!, and is therefore a natural focal action.

Any new iteration (“the next level”) is a best response to the opponent’s

behavior. For example, the L2 type of Player 1 plays a and the L2 type of Player

2 plays B or C. Then, the L3 type of Player 1 plays a or b and the L3 type of

Player 2 plays B. This process continues ad infinitum. Player 1’s best responses
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are always in {a, b}, and Player 2’s best responses are always in {B,C}.

The iterative ‘top-down’ model of reasoning is a more general model than this

simple model. It explicitly allows players to hold arbitrary risk preferences within

expected utility. Moreover, players may hold any belief about the expected-utility

preferences of other players as well as over lower types L1, ..., L(k → 1) of other

players. Even with these generalizations, it is still true that players will play

actions in {a, b} and in {B,C}. For details, see Section 5. As all strategic types

(Lk where k ↑ 2, i.e., those types that are rational and believe in rationality) of

Player 1 in the generalized iterative ‘top-down’ model of reasoning play an action

in {a, b} and expect Player 2 to choose an action in {B,C}, their expected payo!

must be strictly greater than 12.13

The solution concept of 2-rationalizability does not restrict Player 1 to value

the game IR above 12. First, note that all actions of Player 2 in IR are 1-

rationalizable, since for any of their actions there exists some belief about Player

1’s play such that the action is a best response.14 Second, if Player 1 believes

that Player 2 is rational, they must believe that Player 2 plays a 1-rationalizable

action. Such a player may reasonably hold any belief over the distribution of

{A,B,C,D}. For example, Player 1 who believes that Player 2 is rational and

assigns equal probability to all actions of Player 2 will choose the action a, and

their expected payo! will be less than 12.

The dominance-solvable game “DS” The second diagnostic game is dominance-

solvable in a single iteration, as A is a strictly dominant strategy for Player 2.

It obviously dominates B and C according to ↔1, as strict domination does not

require strategic reasoning. That is, the L1 type and any higher type of Player 2

will play action A, which is a natural focal point for Player 2.

Now consider Player 1’s behavior. If they are of level-1, they choose between

payo! vectors aaa = (0, 12, 11), bbb = (5, 13, 0), and ccc = (12, 8, 0). Notice that a

13Player 1 may value IR exactly at 12. However, this can only occur with an extreme form of
ambiguity aversion coupled with the player’s set of priors including all degenerate priors. We
elaborate on this point in Section 5 and document that it is not an empirical concern.

14Beyond B and C discussed above, A is a best-response to Player 1 playing c and D is a best
response to Player 1 playing d.
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permutation of aaa dominates ccc, thus aaa ↔1 ccc. However, neither aaa ↔1 bbb nor bbb ↔1 aaa

is true. Either action a or b could be natural focal points for Player 1 of type

L1. Action a is associated with the highest arithmetic mean, while action b is

associated with the highest payo!. Since Player 2 of type Lk (k ↑ 1) plays A, it

must be that any Player 1 of type Lk (k ↑ 2), best responds by playing c. From

the above argument, it follows that the expected payo! of a rational Player 1 who

believes that Player 2 is rational (all types with k ↑ 2) equals 12.

In contrast to the IR game, the solution concept of 2-rationalizability does

restrict the valuation of the DS game. Any player who is rational and believes in

rationality must still behave exactly the same as in the iterative ‘top-down’ model

of reasoning. Thus, any such player chooses action c and has an expected payo!

of exactly 12 irrespective of being an iterative-reasoner or not.

Player 1’s preferences over IR and DS All players who are rational and believe

that their opponents are rational prefer playing IR over DS in the iterative ‘top-

down’ model of reasoning. The expected payo! of 12 in DS is strictly lower

than the expected payo! in IR. As a consequence, a ‘top-down’ iterative-reasoner

should strictly prefer to play IR over DS. However, a player who is rational and

believes in rationality, yet falls outside the iterative ‘top-down’ model of reasoning,

may very well prefer to play DS over IR. This behavioral di!erence is the core of

our identification strategy.

Up to this point, we have restricted beliefs of rationality somewhat tightly

for our strategic types (types with k ↑ 2). In our iterative ‘top-down’ model of

reasoning, there is no way for such a type to be uncertain about rationality; that

is, there is no sense in which a type could believe others are playing actions that

are not consistent with rationality. However, we can easily account for that by

introducing a second non-strategic type that plays randomly, which we refer to

as “level-0” (“L0 type”). We now simply permit a strategic Lk type to hold any

beliefs over lower types {L0, L1, . . . , L(k→1)}. Importantly, relaxing beliefs about

rationality in such a way does not alter the ranking of IR over DS. Put di!erently,

any such strategic ‘top-down’ iterative-reasoner should still strictly prefer to play
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IR over DS.15

Lastly, the comparative statics also hold in Nash equilibrium.16 IR has a Nash

equilibrium in mixed strategies where the equilibrium actions coincide with the

actions prescribed by the iterative ‘top-down’ model of reasoning. The equilibrium

payo! is also strictly greater than 12 and strictly dominates the equilibrium payo!

inDS, which is exactly 12. The Nash equilibrium of IR is
(
(8/9, 1/9, 0, 0), (0, 13/15, 2/15, 0)

)

with payo!s
(
182/15, 112/9

)
. DS has a Nash equilibrium in pure strategies:

(
(0, 0, 1), (1, 0, 0)

)

with payo!s (12, 10).

The control games The two control games are designed to rule out other con-

founding factors that can potentially contribute to preferring DS over IR. Their

strategic form is depicted in Figure 2. Notice that Player 1’s potential payo!s in

the two control games are identical to their payo!s in DS, so the only di!erence

between the three games arises from varying Player 2’s payo!s.

MS Player 2

A B C

P
la
ye
r
1 a

6
0

10
12

8
11

b
16

5
3

13
10

0

c
9

12
8

8
10

0

NE Player 2

A B C

P
la
ye
r
1 a

13
0

14
12

6
11

b
5

5
3

13
16

0

c
10

12
9

8
9

0

Figure 2: The controls – The Mixed-Strategy Game (MS) and the Nash-
Equilibrium Game (NE)

Our controls serve two purposes. First, we want to control for the size of the

game; that is, whether players prefer any smaller game over IR per se. To do

so, we introduce MS, which is a 3 ↘ 3 bimatrix game with the iterative ‘top-

down’ model of reasoning prescribing to Player 1 actions ↓ {a, b, c}. MS has a

Nash equilibrium in mixed strategies similar to IR where players mix over actions

↓ {a, b} (but not c), and Player 1’s equilibrium payo! is strictly lower than the

15We elaborate on this in Section 5, where we present a more formal analysis.
16This is also true in logit Quantal Response Equilibrium. Details are available upon request.
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equilibrium payo! in IR.17

Second, we want to control for the fact that DS has a unique Nash equilib-

rium in pure strategies. Thus, we consider NE – a game with a unique Nash

equilibrium in pure strategies. In contrast to DS, however, this game is not

dominance-solvable. Here too, the iterative ‘top-down’ model of reasoning pre-

scribes player’s action ↓ {a, b, c}. Once again, Player 1’s equilibrium payo! in

NE is strictly lower than the equilibrium payo! in IR. The Nash equilibrium

in NE is
(
(0, 0, 1), (1, 0, 0)

)
with equilibrium payo!s (12, 10), which coincide with

the equilibrium payo!s in DS.

As we are solely interested in participants’ behavior in the role of Player 1, all

three 3↘ 3 games (DS, MS, and NE, respectively) are chosen to share common

features. As noted above, all payo!s for Player 1 are kept constant across these

games to improve control and ease of comparison. We only altered the payo!s

associated with actions ↓ {A,B,C} for Player 2. Moreover, notice that in the

control games, like the IR game, all actions are iteratively undominated. Thus,

DS stands alone as being the unique game where reasoning about rationality alone

is enough to predict the opponent’s play.

3 The Experiment

3.1 Implementation

We divided the experiment into two parts. In each part, participants faced four

decision-making problems in random order. We told participants that they would

be randomly matched with another participant, who had already made their

choices in a previous auxiliary session. The purpose of this design feature was

to collect all data in an individual decision-making setting, to ameliorate any

form of social preferences when choosing actions and participants engaging in

forward-induction considerations.

We told participants that this other participant, whom we called “Player Z,”

17The Nash equilibrium in MS is
(
(7/9, 2/9, 0), (0, 11/12, 1/12)

)
with payo!s

(
143/12, 76/9

)
.
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is either an undergraduate student from any year or discipline at the University

of Toronto or a Ph.D. student in Economics who took several advanced courses

that are highly relevant for this experiment. Participants would not learn their

opponent type until the end of the experiment. Therefore, participants always

made two choices: one if Player Z was an undergraduate student from any year

or discipline and another if they were a Ph.D. student in Economics.

Figure 3 visualizes the implementation of the two diagnostic games.

Figure 3: Game Implementation – IR (top) and DS (bottom)

The matrices on the left represent participants’ payo!s in IR (top) and DS

(bottom). The matrices on the right represent Player Z’s payo!s in IR and DS,

respectively. The opponent type was visualized via color (red = undergraduate

and blue = Ph.D. student).

Our experimental implementation of the games makes it particularly salient

for participants that Player Z has a strictly dominant strategy in DS. Moreover,
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in IR, it highlights the attractiveness of action C for the L1 type of Player Z,

although it is more nuanced compared to DS. As this type is non-strategic and

does not take the other player’s incentives into account, visualizing each player’s

payo!s in a separate matrix directs attention to the sequence of numbers or single

entry that is the highest. Put di!erently, both our design and implementation

make natural focal points for a non-strategic player in both games particularly

salient.

To improve the experience of participants and to assist in selecting an action,

we implemented a highlighting tool that used two colors: yellow and light green.

When a participant moved their mouse over a row in their matrix (“Your Earn-

ings”), the action was highlighted in yellow in both matrices: a row in their matrix

and a column in Player Z’s matrix (“Player Z’s Earnings”). By left-clicking the

mouse over a row it remained highlighted, and participants could unhighlight it

by clicking their mouse again or clicking another row. Similarly, when partici-

pants moved their mouse over a row that corresponds to an action of Player Z

in “Player Z’s Earnings,” the row was highlighted in light green, and the corre-

sponding column was highlighted in light green in “Your Earnings.” Clicking the

mouse over the row kept it highlighted, and clicking it again (or clicking another

row) unhighlighted it.

We also told the participants that Player Z participated in a previous auxiliary

experimental session in which they were matched with another participant, called

“Player Y ,” who participated in the same session and played their role. When

Player Z was an undergraduate student in any year or discipline, so was Player

Y ; and when Player Z was a Ph.D. student in Economics, so was Player Y . We

used Player Z’s decisions from the auxiliary sessions to determine participants’

earnings in the main experiment.

In addition, we gave participants the opportunity to write notes to their “future

self.” Below each decision problem, participants could write down the reasoning

behind their choice of action in a text box. What they typed was displayed later

on in the experiment. We told participants that these notes would help them make
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decisions in the second part of the experiment.

To account for possible order e!ects, we gave participants another opportunity

to revisit their choices and confirm them.18 We displayed their notes and partic-

ipants were able to modify them. Afterwards, participants advanced to the next

part of the experiment.

Figure 4: The Valuation Task

In the second part of the experiment, we elicited participants’ approximate

valuations via choice lists. We asked them to make a series of choices between
18We find no evidence of order e!ects, using both parametric and non-parametric tests.
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playing the four decision problems against both Player Z types with their action

choices from the first part of the experiment and sure amounts. For example,

suppose that in the first part of the experiment a participant chose action c in

any given 3 ↘ 3 game, as highlighted in Figure 4. The payo! from the decision

problem depends on the action chosen by Player Z and is either $12, $8, or $0 if

Player Z chose A, B, or C, respectively.

The choice problems were organized in four pairs (4 ↘ 2 = 8 lists), where

Option A changed between lists and represented participants’ payo!s from each

of the four decision problems against both types of opponent from the first part of

the experiment. Option B paid with certainty and started at $8 in the decision of

the choice list, and increased by $0.25 as the participant moved from one line to

the next until $14. For each decision problem, we showed participants their notes

from the first part of the experiment to remind them of their reasoning behind

their action choices.

Finally, one of the choice problems in one of the choice lists was randomly

selected, and the participant’s choice in that choice problem determined their

payment. If a participant chose the sure amount in Option B, then they received

the payment specified in Option B in that choice problem. If a participant opted

for Option A, then their payment depended on the action chosen in the decision

problem in the first part of the experiment, if their Player Z was an undergraduate

student or a Ph.D. student, and on the action chosen by Player Z.19

3.2 Participants and Procedure

We conducted the experiment in April 2020 with students enrolled at the Uni-

versity of Toronto. Participants were recruited from the Toronto Experimental

Economics Laboratory’s (TEEL) subject pool using ORSEE (Greiner 2015). No

one participated in more than one session. Participants signed up ahead of time

for a particular day, either the 4th or 5th of April 2020 for the auxiliary part of

the experiment; or the 11th, 13th, and 15th to 20th of April 2020 for the main

19The timeline of the experiment and the key features are visualized in the Supplemental Ap-
pendix.

21



experiment. On the day of the experiment, we sent an electronic link to partici-

pants at 8 AM EDT, and they had to complete the tasks by 8 PM EDT. During

this time window, participants could contact an experimenter anytime via cell

phone or Skype for assistance. After reading the instructions, participants had

to correctly answer nine incentivized comprehension questions before starting the

first task, and five more incentivized comprehension questions before starting the

second task. We paid $0.25 for answering each question correctly on their first

attempt. If participants made a mistake, no payment was made for that ques-

tion, but they had to answer it correctly to proceed to the next question. The

experiment was programmed in oTree (Chen, Schonger, and Wickens 2016). We

recruited a total of 244 participants (9 for the auxiliary sessions and 235 for the

main experiment) and all payments were made via Interac e-transfer, a commonly

used payment method by Canadian banks that only requires an e-mail address

and a bank account. The average participant earned approximately $18 (maxi-

mum payment was $22.50 and minimum payment was $5.50), including a show-up

payment of $5. All payments were made in Canadian dollars. The instructions

and experimental interface are reproduced in the Supplemental Appendix.20

3.3 Discussion of the Implementation and Procedure

The core idea of this paper is to identify a novel behavior that reflects whether

reasoning is outside the iterative ‘top-down’ model of reasoning. Thus far, we have

developed an identification strategy for such behavior and, before presenting the

results of the evaluation of its pervasiveness, we briefly discuss some aspects of the

experimental implementation and its procedure. We collected Player Z’s decisions

on action choices in the four games in two separate auxiliary sessions. This has

the following advantages: First, we were able to match participants (Player Y and

Player Z) with the same level of sophistication. Second, we could collect all the

decisions in the main experiment in an “individual decision-making” framework.

As we collected data during the lockdown in the COVID-19 pandemic, we could not

20A live version with all dynamic elements displayed to participants can be accessed upon request.
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run any experiment sessions in the laboratory. Instead, undergraduate students

enrolled at the University of Toronto eagerly participated remotely. Thus, we

were able to avoid any coordination issues stemming from simultaneous strategic

decision-making in an online context. Lastly, as choices and payments in the

auxiliary sessions had materialized already, this design can eliminate concerns

that choices made by participants in the main experiment were motivated by

social preferences or forward induction considerations. To avoid quick heuristic-

based decision-making, we forced participants to spend at least 10 minutes on each

set of instructions and at least 3 minutes on each of the four games against either

opponent type before buttons were activated. Further, we presented all four games

in random order to avoid any order e!ects and, in addition, gave participants the

opportunity to revise their decisions after they were exposed to all four games and

had selected an action choice. Remaining conscious of possible order e!ects, we

also reversed the opponent order between the two parts of the experiment. That

is, if participants faced always an undergraduate student before a Ph.D. student

in Economics when choosing an action, then they always faced a Ph.D. student in

Economics before an undergraduate student in the valuation task and vice versa.

4 Results

We break the analysis into four sections. After a brief coherence examination of

the valuation data, we begin our main analysis by presenting the experimental

results, focusing first on the preferences between IR and DS, and then explore

the valuation data in all four games. Next, we focus on behavior conditional on

the opponent’s identity; that is, whether Player Z was an undergraduate student

of any year or discipline or a Ph.D. student in Economics. Lastly, we delve into

the non-choice data embedded in the participants’ notes.
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4.1 Coherence of Elicited Valuations

Before turning to choice behavior and the ranking of IR and DS, we first present

the empirical valuation data from some of the games to illustrate both that par-

ticipants exhibit reasonable valuations and that there are powerful insights to be

gained for an outside observer by eliciting participants’ certainty equivalent for

each game.

In total, we collected data from N = 235 participants. The only exclusion

restriction for valuations that we impose is consistency with rationality. That

is, we exclude behavior characterized by valuations that exceed the maximum

possible payo! given their action choice; for example, playing action b with a

valuation v = 14 in DS, MS, or NE, respectively. Figure 5 displays several

empirical value distributions.

Figure 5: Empirical Value Distributions of DS by action choice; and Empirical
Value Distributions of DS MS, and NE conditional on Playing Action c in DS

First, we show the empirical value distributions in DS by action for n = 455

choices; that is, all choices with consistent valuations irrespective of opponent

type. Approximately 76% of choices fall on action c, 17% play action b and the

remaining 7% choose action a. Participants who play c tend to value playing

DS more than participants who choose a or b. Recall that c is dominated by a

according to ↔1, and that the highest payo! in b (13) is higher than the highest
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payo! in c (12). This suggests that those who played c have done so for strategic

reasons.

Second, we highlight the empirical value distributions in DS and both control

games conditional on playing action c irrespective of opponent type, leaving us

with n = 618 choices in total. Recall that participants face the exact same payo!s

in these three games, so di!erent choices and valuations in these games must arise

from the di!erent strategic structures. The frequency of action-c play in DS is

approximately 2→3 times higher compared to those in the two control games, MS

and NE, respectively. Furthermore, the empirical value distribution for DS first-

order stochastically dominates those for NE and MS, suggesting that opponent

behavior in DS is easier to predict relative to NE and MS.

4.2 IR and DS Valuations

We impose an additional exclusion restriction for the IR and DS choices in our

main analysis. That is, in addition to imposing consistency of rationality, we focus

on observed choices where only action c is played in DS. Restricting attention

to action c in DS allows us to isolate the choices made by strategic participants,

as the L1 non-strategic type only plays actions a or b in DS and never plays

action c. Thus, we restrict attention to n = 343 choices. That is, we focus on

179 participants facing an undergraduate student and 164 participants facing a

Ph.D. student in Economics.21 To give a first overview, we present the aggregate

results of the action choices in the diagnostic games. Table 1 o!ers a synopsis of

the frequency of action choices in IR.

Table 1: Frequency of Action Choices in the IR Game

Action IR

a 242/343
b 37/343
c 37/343
d 27/343

All choices made irrespective of opponent type.

21All analyses reported in the main text are replicated for all participants and choices in our
sample. These results are reported in the Supplemental Appendix.
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Approximately 71% of the choices in IR are concentrated on action a, and the

remainder is roughly equally distributed among actions b, c, and d, respectively.

As a first-pass, we summarize the choice behavior and the ranking of IR and

DS irrespective of the opponent type. Table 2 lists these results.

Table 2: Preferences between IR and DS

IR ↔ DS IR ↭ DS

IRM Prediction all nil

Ratio 154/343 189/343
Percentage 44.9% 55.1%

All choices made irrespective of opponent type.
IRM ≃ Iterative ‘top-down’ model of reasoning.

The observed choices are clearly at odds with the predictions of the iterative

‘top-down’ model of reasoning (or Nash equilibrium). While players are predicted

to strictly prefer IR over DS, less than half of all observed choices are in line with

the prediction. This is the first evidence at the aggregate choice-level suggesting

that participants’ reasoning may fall outside the iterative ‘top-down’ model of

reasoning.

Introducing controls As a next step, we include the two control games in our

aggregate-choice analysis. We are interested in those participants who weakly

prefer DS over IR, and not those who may have a preference for smaller games

or Nash equilibrium in pure strategies per se.

To do so, we require that participants make choices consistent with best-

responding in both MS and NE games.22 As a result, we are now focussing

on 153 participants facing an undergraduate student and 138 participants facing a

Ph.D. student in Economics, respectively. Table 3, Control #1 lists these results

of n = 291 observed choices irrespective of opponent type. As is evident, control-

ling for best-response consistency at the aggregate choice level does not make a

substantial dent in participants’ overall ranking of IR and DS.

22In this step, we remove participants’ choices of a with a valuation v > 12, and further exclude
those whose valuations that exceed the maximum possible payo! given their action choice in
either of the two control games.

26



Table 3: Controlling for Best-Response Consistency in All Games
and Equal Valuations of All Small Games

IR ↔ DS IR ↭ DS

IRM Prediction all nil

Control #1 135/291 156/291
B-R Consistency 46.4% 53.6%

Control #2 138/268 130/268
NE Preference 51.5% 48.5%

Control #3 107/213 106/213
Equal Valuations 50.2% 49.8%

All choices made irrespective of opponent type excluding all choices that are inconsistent
with best-responding (“C#1”); preference for Nash equilibrium in pure strategies (“C#2”);

and value DS, MS, and NE equally (“C#3”). IRM ≃ Iterative ‘top-down’ model of
reasoning.

Next, we exploit the Nash equilibrium in pure strategies that characterizes

both DS and NE. Here, we exclude action c choices in both games and value

NE weakly above IR. This allows us to control for those that may feature an

intrinsic preference for Nash equilibrium in pure strategies per se. By doing so,

we focus on 147 participants playing against an undergraduate student and 78

participants playing against a Ph.D. student in Economics, respectively. The

summary statistics for this control are listed as Control #2 in Table 3. Similar to

the previous control, this control does not alter the overall ranking of the diagnostic

games either.

Finally, we leverage MS and NE and, in this step, exclude those choices that

value all small games equally; i.e., vDS = vMS = vNE. This allows us to control for

those participants who have high valuations inDS relative to IR due to an intrinsic

preference for smaller games or Nash equilibrium in pure strategies. This results

in concentrating on 113 participants playing against an undergraduate student

and 100 participants playing against a Ph.D. student in Economics. These results

are reported in Table 3, Control #3. Although this control slightly reduces the

proportion of choices that rank the DS game higher than the IR game, about half

of the choice and valuation decisions are inconsistent with the iterative reasoning

model. In general, the inclusion of the controls does not alter the results. Although
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the ratio of those who weakly prefer DS over IR somewhat decreases, the big

picture still suggests that the reasoning of many participants may fall outside of

the iterative ‘top-down’ model.23

Belief that opponent is rational Here, we consider those participants who be-

lieve that their opponents are rational and are confident that Player Z is rational.

Recall that our design makes the sharpest predictions for these types – unambigu-

ously predicting that participants using the iterative ‘top-down’ model of reasoning

would strictly prefer to play IR over DS. Our design allows us to identify these

participants by exploiting the valuation data collected in the second part of our

experiment. In particular, we now include an additional exclusion restriction by

requiring valuations of 12 ↗ v ↗ 12.25 in DS.24 Table 4 summarizes the choice

behavior by the ranking of IR and DS irrespective of the opponent type but

conditional on believing in the opponent’s rationality.

Table 4: Belief that Opponent Is Rational

IR ↔ DS IR ↭ DS

IRM Prediction all nil

Ratio 72/197 125/197
Percentage 36.5% 63.5%

All choices made irrespective of opponent type
conditional on believing in opponent’s rationality.
IRM ≃ Iterative ‘top-down’ model of reasoning.

When requiring players to be confident that their opponent is rational (the

value of c in DS is 12, indicating that Player 1 is confident that Player 2 will play

the dominant action), close to two-thirds of n = 197 choices rank DS above IR.

This behavior reflects reasoning that falls outside the iterative ‘top-down’ model.

23A potential concern may arise because we used choice lists to elicit participants’ approximate
valuation for each game. As these lists are discrete, we could potentially misclassify partici-
pants’ ranking. Those participants who valued both IR and DS exactly at v = 12.25 could
be classified as weakly ranking DS above IR despite being consistent with the iterative ‘top-
down’ model of reasoning. Of the n = 343 choices presented in Table 2, only 29 choices value
both games exactly at v = 12.25. For the controls, this reduces further to 10/291 in Control #1
and 7/213 in Control #3, respectively.

24This results in concentrating on 106 (91) participants playing against an undergraduate student
(a Ph.D. student in Economics).
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4.3 Opponent Type

We now turn to choices at the subject-level and discuss di!erences in behavior by

opponent type. We maintain all our exclusion restrictions discussed above, but as

we are interested in participants that satisfy these exclusion restrictions against

both opponent types – the intersection – we thus concentrate now on n = 144

participants. Thus far, we have established that approximately half of the choices

fall outside the iterative ‘top-down’ model of reasoning. Recall that this turns out

to be true especially if one believes that their opponents are rational. Among this

subset of choices, approximately two-thirds of choices fall outside the model.

Table 5 shows the comparative statics of the ranking over the set of diagnostic

games conditional on the opponent’s identity; that is, whether participants played

against an undergraduate student of any year or discipline or a Ph.D. student in

Economics.

Table 5: Ranking of IR and DS by Opponent Type

Undergraduate

IR ↔ DS IR ↭ DS

P
h
.D

.

IR ↔ DS IRM Prediction all nil

Ratio 46/144 23/144
Percentage 31.9% 16.0%

IR ↭ DS IRM Prediction nil nil
Ratio 18/144 57/144

Percentage 12.5% 39.6%
IRM ≃ Iterative ‘top-down’ model of reasoning.

These numbers are not overly sensitive to the opponent’s type: 71.5% of par-

ticipants exhibit a stable model of reasoning irrespective of the opponent’s char-

acteristics. That is, the majority of participants respond similarly to both un-

dergraduate and Ph.D. students in Economics. Specifically, about 32% of the

participants’ choices are consistent with the iterative ‘top-down’ model of reason-

ing against both undergraduate students and Ph.D. students in Economics in IR

and about 40% are inconsistent against both.25 Among the remainder, of those

25These 57 participants value the DS game (weakly) more than the IR game. Moreover, the
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who respond to the opponent’s type, the results are split. 12.5% are consistent

with the iterative ‘top-down’ model of reasoning against undergraduate students

and not Ph.D. students in Economics, while 16% are consistent with the itera-

tive reasoning model against Ph.D. students in Economics but not undergraduate

students.

4.4 Non-Choice Data

Recall that we gave participants the opportunity to write notes to their “future-

self.” Below each of the two diagnostic games and the two control games against

either opponent type, participants could write down the reasoning behind their

choice of action in a text box. If participants decided to type anything in these

text boxes, it was displayed again later in the experiment: the first time when

participants were prompted to confirm their choice of action and the second time

when faced with the valuation task. We did not force participants to write any-

thing in these text boxes; however, we told them that these notes would help

them when making choices in the second part of the experiment. As expected,

not all participants made use of this opportunity. However, those who did give

us the opportunity to use their notes as “the window of the strategic soul.”26

Using both action choice and valuation data, we documented evidence at the ag-

gregate choice-level that suggests that participants may value the predictability

of their opponents’ behavior. Moreover, we showed that this observation is even

more stark if participants believe that their opponents are rational with 63.5% of

choices ranking DS above IR. Among this subset of participants, we are curious

to see whether there is any suggestive evidence of participants indicating that the

opponents’ actions are predictable in DS and IR, and if there is any di!erence by

the ranking of IR and DS. We have established that 197 choices are consistent

with holding the belief that their opponent is rational, meaning that the player

is confident that Player Z is rational. In 105 (113) of these choices, participants

valuation data reveal that for these participants the IR game becomes relatively more valuable
than theDS game when playing against a Ph.D. student rather than an undergraduate student.

26Vincent Crawford coined this term in Crawford (2008).
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took notes in IR (DS). Table 6 provides summary statistics for this subset of

choices by the ranking of the set of diagnostic games.

Table 6: Notes – Belief that Opponent Is Rational

Indication that Player Z’s Action Is Predictable
IR DS

yes no yes no

IR ↔ DS Ratio 22/52 14/53 18/60 25/53

Percentage 42.3% 26.4% 30.0% 47.2%
IR ↭ DS Ratio 30/52 39/53 42/60 28/53

Percentage 57.7% 73.6% 70.0% 52.8%

If a participant indicated that the opponent’s choice is predictable in one of the

games, it increased the likelihood that they would prefer that game. For example,

out of the 105 participants who took notes in the IR game, 52 participants noted

that Player Z’s action is predictable. The probability of preferring IR to DS

increased from 26.4% to 42.3% (an increase of approximately 60%). Similarly, of

the 113 participants who took notes in DS, 60 wrote that Player Z’s action was

predictable. The probability of preferring the IR game to the DS game among

them was 30%, compared to 47.2% among participants who took notes but did

not mention the predictability of Player Z’s action in DS (a decrease of more than

36.4%).

We complement this qualitative analysis with natural language processing tools

to gain additional insights on participants’ thought process. In line with the

choice behavior presented in Section 4, participants who rank one diagnostic game

above the other also express their reasoning in more detail, use more complexity-

related keywords to express more sophisticated reasoning, are more positive and

optimistic, and feature more determination and certainty in their preferred game

compared to the other diagnostic game. Moreover, di!erences in the ranking of

games are associated with di!erent topics and clusters that can be recovered using

natural language models.27 This lends further qualitative support to the idea that

the DS ↫ IR group and the DS ⇐ IR group treat the two diagnostic games

27We elaborate on this in detail in the Supplemental Appendix.
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systematically di!erently and employ fundamentally di!erent reasoning processes.

5 Theoretical Analysis

In Section 2, we provided intuitive explanations for our identification strategy. In

this section, we elaborate and present a formal analysis.

5.1 Theory

Let G = (S1, S2, u1, u2) be a finite 2-player game where Si is player i’s strategy

set and ωi : S1 ↘ S2 ⇒ R is player i’s pecuniary payo! function, which depends

on player i and the other player’s (→i) strategies. We allow for general expected-

utility preferences over monetary payo!s. Let U be the set of von Neumann-

Morgenstern utility functions, which are strictly increasing functions mapping R

to R. For any ui ↓ U, the function ui ⇑ ωi : Si ↘ S→i ⇒ R represents the utility

of player i. Denote by µ→i ↓ ”(S→i) player i’s beliefs over player →i’s strategies.

Extend ui

(
ωi(Si, S→i)

)
to ui

(
ωi(Si, µ→i)

)
in the usual way to represent player i’s

expected utility.

Let BRi be the best response set for each player i. This set specifies the

strategies that are a best response for player i given both player i’s preferences,

ui ↓ U, and the belief they hold about the play of the other player, µ→i. Formally,

for ui ↓ U and µ→i ↓ ”(S→i),

BRi[ui, µ→i] := {si ↓ Si : ui

(
ωi(si, µ→i)

)
↑ ui

(
ωi(ri, µ→i)

)
, for each ri ↓ Si}.

We will be interested in two solution concepts. First, the iterative ‘top-down’

model of reasoning, which intuitively captures how players reason when they can

model the behavior of others. Second, the concept of 2-rationalizable strategies,

which incorporates the assumption that player i is rational and believes player

→i is rational and nothing more. Intuitively, this solution concept captures how

players reason when they cannot model the behavior of others. We define both

below.
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Iterative ‘top-down’ model of reasoning This model is anchored by the non-

strategic L1 behavior characterized by↔1. Let L1
i = {si ↓ Si|⊋ si⇓ ↓ Si where si⇓ ↔1

si} be the set of actions that can be played by the L1 type. This is the set of

actions that are undominated according to ↔1.

In Section 2, we discussed the possibility of extending the model to allow for

uncertainty over others’ rationality. We do this by defining an L0 type that is non-

strategic and plays all actions – even strictly dominated actions – with positive

probability. Specifically, we impose the restriction that the L0 type plays uniformly

random: µ0
i (s) =

1
|Si| for all s ↓ Si. Strategic types that place positive probability

on facing the L0 type will be uncertain about the rational play of others.

The behavior of all Lk types can be defined recursively, anchored on the be-

havior of the L0 and L1 types. Denote by Lk
i the set of actions consistent with

k iterations of reasoning by player i. Then, for k ↑ 2, the set Lk
i is the set of

strategies si in BRi[ui, µ→i] such that there exists some ui ↓ U and µ→i ↓ ”(S→i)

that satisfies the following two conditions. First, beliefs over the play of others

must take the following form: µ→i = p · µ0
→i + (1→ p) · ε→i for some p ↓ [0, 1) and

ε→i ↓ ”(S→i) with ε→i(⇔k→1
j=1L

j
→i) = 1. This ensures that player i’s beliefs about

player →i’s behavior are consistent with the assumption that players’ reasoning is

organized in a ‘top-down’ fashion. Put di!erently, player i can only assign posi-

tive probability to actions played by types with levels strictly less than k. Second,

si ↓ BRi[ui, µ→i]. This condition ensures that player i’s strategy si maximizes

their expected utility given player i’s preferences ui, and the belief that player →i

plays according to µ→i. We will refer to any action ai in Lk
i as an action played by

the Lk type for player i.

2-rationalizability The solution concept of 2-rationalizable strategies incorporates

both the assumption of rationality and belief in rationality. Let S1
i be the set of

strategies si such that there exists some ui ↓ U and µ→i ↓ ”(S→i) with si ↓

BRi[ui, µ→i]. The set S1
i includes all rational strategies for player i. These are a

best response for player i given their preference ui and beliefs µ→i about player

→i’s play. We refer to any action ai in S1
i as a 1-rationalizable strategy. Given
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this, we can define S2
i as the set of strategies si so that there exists some ui ↓ U

and µ→i ↓ ”(S→i) that satisfies the following conditions. First, si ↓ BRi[ui, µ→i],

which ensures that si maximizes player i’s expected utility given the belief that

player →i behaves according to µ→i. Second, µ→i(S1
→i) = 1. This ensures that

player i can only place positive probability on 1-rationalizable strategies, which

are the strategies consistent with the assumption that player →i is rational. We

will refer to any action si in S2
i as a 2-rationalizable strategy.28

5.2 Revisiting the Diagnostic Games

The iterative-reasoning game “IR” First, note that we can denote any probabil-

ity measure p ↓ ”(S1) (and p ↓ ”(S2), respectively) as a 4-tuple (p1, p2, p3, p4).

This represents the probabilities over {a, b, c, d} (and {A,B,C,D}, respectively).

Then in this game, L0 behavior is given by µ0 = (1/4, 1/4, 1/4, 1/4) for both players.

Further, recall from Section 2 that L1
1 = {a, b} and L1

2 = {C}.

The Lk
i sets can then be calculated recursively given the anchoring L0 and

L1 behavior. Let k ↑ 2. For Player 1, the Lk type can hold any belief about

Player 2’s behavior that is a mixture between µ0 and the two degenerate beliefs:

(0, 1, 0, 0) and (0, 0, 1, 0). In other words, beliefs take the form µ2 =
(
p0/4, p0/4 +

pB, p0/4+pC , p0/4
)
for some p0, pB, pC ↓ [0, 1] with p0+pB+pC = 1. A strategy si is

in Lk
1 if there exists some u ↓ U such that si ↓ BR1[u, µ2]. Clearly, actions a and

b are in Lk
1 as they maximize the expected payo! under the player’s belief when

pC = 1 and pB = 1, respectively. Importantly, we also need to ensure that a and b

are the only choices that maximize expected utility for every utility function u.29

We begin with the observation that a strategy si ↓ S1 induces a lottery through

the belief p ↓ ”(S2), which we denote si,p. For example, the action a induces the

28In order for the solution concept to be free of assumptions about risk preferences we explicitly
allow players to hold any expected utility preferences. The same result could be achieved by
specifying a single preference specification for each player with preferences characterized by
extreme risk aversion. This follows from Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci
(2016) and Weinstein (2016) who show that risk aversion expands the set of k-rationalizable
actions (while risk loving contracts the set).

29For this we will rely on the following equivalence: a lottery p first-order stochastically domi-
nates lottery q if and only if p is preferred to q for all u ↓ U.
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lottery aµ2 = (13, p0/4; 12, p0/4 + pB; 11, p0/4 + pC ; 0, p0/4). This lottery first-order

stochastically dominates the lotteries cµ2 and dµ2 . It follows that actions c and d

cannot maximize the player’s expected utility for any utility function u. Thus, we

conclude that Lk
1 = {a, b}.

For Player 2, the Lk type can hold any belief about Player 1’s behavior that

is a mixture between µ0 and the two degenerate beliefs: (1, 0, 0, 0) and (0, 1, 0, 0).

In other words, beliefs take the form µ1 =
(
p0/4 + pa, p0/4 + pb, p0/4, p0/4

)
for some

p0, pa, pb ↓ [0, 1] with p0 + pa + pb = 1 and p0 < 1. Consider the case where

pa ↖= 1, then the lottery Cµ1 first-order stochastically dominates the lotteries Aµ1

and Dµ1 . Next, consider the case where pa = 1, then the lottery Bµ1 first-order

stochastically dominates the lottery xµ1 for x ↓ {A,C,D}. Thus, we conclude

that Lk
2 = {B,C}.

Lk
1 = {a, b} if k ↑ 1

Lk
2 =






{C} if k = 1

{B,C} if k ↑ 2

We now turn to characterizing the 2-rationalizable set for Player 1, which

captures the case of a player who is rational and believes that Player 2 is rational.

Here, Player 1 believes that Player 2 plays a 1-rationalizable strategy. The 2-

rationalizable set for Player 1 and the 1-rationalizable set for Player 2 are:

S2
1 = {a, b, c, d} S1

2 = {A,B,C,D}

It is straightforward to see that all actions for Player 2 are 1-rationalizable.

This is the case as each action maximizes expected payo!s under some degenerate

belief about the play of Player 1. It follows that all actions are 2-rationalizable

for Player 1 as each action for Player 1 maximizes expected payo!s under some

degenerate belief about Player 2’s behavior.

Lastly, we elicited participants’ valuation for each game, i.e., their certainty

equivalent. Since a player’s utility function is monotone, the analyst can infer their
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ranking over the games. Moreover, the valuations reveal important information

about participants’ beliefs.

In the iterative ‘top-down’ model of reasoning, restricting attention to types

that are rational and believe that their opponent is rational confines attention to

types that assign zero weight on others being the L0 type. The expected payo!

in IR must be strictly greater than 12 for these types. It is straightforward to

confirm this claim by setting p0 = 0 in the above arguments. This means that

any type holds a belief that is a mixture of (0, 1, 0, 0) and (0, 0, 1, 0). For any such

belief µ2 = p(0, 1, 0, 0) + (1 → p)(0, 0, 1, 0), the certainty equivalent of the lottery

aµ2 =
(
12, p; 13, (1→ p)

)
is above 12 whenever p ↖= 1, and the certainty equivalent

of the lottery bµ2 =
(
14, p; 0(1→ p)

)
is 14 whenever p = 1. To summarize, players

who are rational and hold the belief that their opponents are rational believe that

they can guarantee themselves a payo! that is strictly greater than 12. It follows

that the certainty equivalent of IR for any expected utility player who believes

that their opponent is rational is strictly above 12.

Caution is potentially warranted if Player 1 is ambiguity averse as they may

value IR at 12. This, however, can only occur under an extreme form of ambiguity

aversion coupled with the player holding degenerate beliefs. More precisely, it

requires Player 1 to play the “safe” action a, to have maxmin expected-utility

preferences and their set of priors must include beliefs that Player 2 plays B with

certainty and a prior that assigns a probability strictly less than 6/7 that Player 2

plays B.30

Moving to payo!s when applying the concept of 2-rationalizability. A player

that believes others are rational can hold any belief over Player 2 choosing a 1-

rationalizable action. This means that in IR Player 1 can hold any belief about the

play of Player 2. In this case, such players may not believe that they can guarantee

themselves any certain payo!. Moreover, one might reasonably conjecture the

30Whether this is an important concern is an empirical question. We can exploit participants’
actions and valuations in the control games to evaluate if ambiguity aversion governs partici-
pants’ valuations. If we allow for maxmin expected utility preferences, and allow that the set
of priors of a player of level (k+1) includes all degenerate priors consistent with the strategies
in Lk

2 in the control games, then (for any action in) both MS and NE have to be valued at 8.
In our data, of all choices, only 1 choice exhibits such extreme form of ambiguity aversion.
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certainty equivalents of these actions to be less than 12.

The dominance-solvable game “DS” In this game, the L0 behavior is given by

the 3-tuple µ0 = (1/3, 1/3, 1/3) for both players. Further, recall from Section 2 that

L1
1 = {a, b} and L1

2 = {A}.

The Lk
i sets can then be calculated recursively given the anchoring L0 and L1

behavior. Let k ↑ 2. For Player 1, the Lk type can hold any belief about Player

2’s behavior that is a mixture between µ0 and the degenerate belief: (1, 0, 0). In

other words, beliefs take the form µ2 =
(
p0/3+ pA, p0/3, p0/3

)
for some p0, pA ↓ [0, 1]

with p0 + pA = 1. A strategy si is in Lk
i if there exists some ui ↓ U such that

si ↓ BRi[ui, µ→i]. Clearly, action a and c are in Lk
1 as they maximizes the expected

payo! under the player’s belief when p0 = 1 and pA = 1 respectively. Further,

notice that the lottery bµ2 is not first-order stochastically dominated by either

lotteries aµ2 or cµ2 , this means we can find some ui ↓ U such that b ↓ BR1[ui, µ2].

Thus, Lk
1 = {a, b, c}.

Turning to the behavior of the Lk type of Player 2, this type can hold any belief

about Player 1’s behavior that is a mixture between µ0 and the degenerate beliefs:

(1, 0, 0), (0, 1, 0) and (0, 0, 1). In other words, a Lk type can hold any beliefs over

Player 1’s play, µ1 ↓ ”(S1). Notice, however, that Player 2 has a strictly dominant

strategy, this means that A is always the best response for Player 2 regardless of

her beliefs. In other words, the lottery Aµ1 first-order stochastically dominates

the lotteries Bµ1 and Cµ1 . Thus, we conclude that Lk
1 = {A}.

Lk
1 =






{a, b} if k = 1

{a, b, c} if k ↑ 1

Lk
2 = {A} if k ↑ 1

Lastly, we briefly discuss the 2-rationalizable predictions. Again, since A is

strictly dominant for Player 2, it is the unique 1-rationalizable action. It follows
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that the only 2-rationalizable action for Player 1 is c.

S2
1 = {c} S1

2 = {A}

In this game, a rational type who believes that their opponent is rational must

hold beliefs of the form (1, 0, 0). Such players believe that they can guarantee

themselves a payo! of exactly 12 with certainty. Notice that reasoners who cannot

model Player 2’s behavior – beyond the belief that Player 2 should play a 1-

rationalizable strategy – might reasonably rank DS above IR.

If Player 1 plays c and values the game less than 12 it reveals to the analyst that

the player is not confident that Player 2 is rational, since the certainty equivalent

of the lottery induced by c is lower than 12 only if it assigns a strictly positive

probability that Player 2 will choose a dominated action. Further, such valuations

shed light on whether the simpler iterative reasoning model from Section 2 or

the more general iterative ‘top-down’ model of reasoning that explicitly allows for

uncertainty over rationality predicts participants’ behavior more accurately.

Player 1’s preferences over IR and DS We first restrict our attention to players

that are rational and believe that their opponents are rational. Consider the

preferences of such types over the two diagnostic games: IR and DS. Although

DS has a smaller strategy space compared to IR and is dominance-solvable, the

game’s expected payo! of 12 is strictly lower than the expected payo! of IR in the

iterative ‘top-down’ model of reasoning. In other words, a ‘top-down’ iterative-

reasoner should strictly prefer to play IR overDS. We now relax the assumption of

belief in rationality. When considering the iterative ‘top-down’ model of reasoning,

this means that we allow players to place positive weight on the L0 type. Fix

p0 ↓ [0, 1) as the probability assigned to the L0 type. In IR, the belief of a ‘top-

down’ reasoner takes the following form: µIR
2 = p0(1/4, 1/4, 1/4, 1/4) + pB(0, 1, 0, 0)+

pC(0, 0, 1, 0) for some pB, pC ↓ [0, 1] with p0 + pB + pC = 1. In DS, the belief of

such reasoner is µDS
2 = p0(1/3, 1/3, 1/3) + (1→ p0)(1, 0, 0).

First, notice that the lottery aIR
µIR
2

=
(
0, p0/4; 12, p0/4 + pB; 13, p0/4 + pC ; 11, p0/4

)

first-order stochastically dominates the lottery aDS
µDS
2

= (0, p0/3+pA; 12, p0/3; 11, p0/3)
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for all p0, pB and pC . Further, the lottery aIR
µIR
2

also first-order stochastically dom-

inates the lottery cDS
µDS
2

= (12, 1 → 2p0/3; 8, p0/3; 0, p0/3; ) for all p0, pB and pC . Thus,

any iterative ‘top-down’ reasoner prefers to play IR over actions a or c in the DS

game, regardless of risk preferences.31

Endogenous depths of reasoning. We now return to the question of whether our

predictions regarding preferences over IR and DS hold even when players’ types

are allowed to change across games.

First, recall that any Lk type with k ↑ 2 strictly prefers IR to DS, as they

value IR strictly more than 12, while all Lk types value DS weakly less than 12.

Therefore, any changes in the reasoning level that remain consistent with k ↑ 2

in IR still support our main prediction.

A potential caveat arises if a player is an Lk type with k ↑ 2 in DS but shifts

to a type with k ↗ 1 in IR. In such a case, it becomes possible for the player to

value IR less than DS. However, this scenario appears unlikely for two reasons.

First, there is no evidence suggesting that players move from type Lk with

k ↑ 1 to k = 0 (Georganas, Healy, and Weber, 2015; Alaoui and Penta, 2016),

so such a change would constitute an extreme form of holding an incorrect belief.

Second, such a change in the level of reasoning is not predicted by the endogenous

depth of reasoning model. In particular, when this model is applied as in Alaoui

and Penta (2016; 2022) and Alaoui, Janezic, and Penta (2022, 2025), it predicts

that if a player is an Lk type with k ↑ 2 in DS, they will have a weakly higher

level of reasoning in IR.32

31The only potential caveat here is that there may be an iterative ‘top-down’ reasoner who is
extremely risk seeking and at the same time very pessimistic about the rationality of others
(high p0), and as such prefers the lottery bDS

µDS
2

= (5, p0/3; 13, 1→ 2p0/3; 0, p0/3) over any lotteries

induced by IR. Such choices are extremely rare in our data. Of 470 choices in total, only 8
participants choose to play b in DS and value the game at 13 ↗ v ↗ 13.25. As in the analysis
presented in Section 4, if we control for such players by focusing on those who play c in DS, the
iterative ‘top-down’ model of reasoning makes the unambiguous prediction that such players
rank IR above DS.

32Following Alaoui and Penta (2016; 2022) and Alaoui, Janezic, and Penta (2022, 2025) we
assume that a player’s value of reasoning is determined by the maximal gain value function
and that their costs of reasoning are fixed across games.
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6 Concluding Remarks

In iterative reasoning models, each player best-responds to the belief that other

players reason to some finite level. In this paper, we propose a novel behavior that

captures the idea that players may believe that others are rational, yet cannot

model their behavior. Within the prism of the level-k model, it encompasses a

situation where a player believes that their opponent can reason to a higher level

than they do. We present a novel experimental design that permits us to identify

such behavior, and evaluate it experimentally.

We find that approximately half of the participants made choices inconsistent

with a very general and permissive model of iterative ‘top-down’ reasoning. This is

true especially if they believe that their opponents are rational. Among those, ap-

proximately two-thirds behave inconsistently with the iterative ‘top-down’ model.

To conclude, we provide experimental evidence that behavior may fall outside

an iterative ‘top-down’ model of reasoning, yet players may still use alternative

models, which rely on belief in their opponent’s rationality, to reason and choose

optimal strategies in games. Our findings support an epistemic approach that

relies on explicitly modeling strategic uncertainty, to supplement the existing ap-

proach that attempts to capture it implicitly through modifications of the iterative

‘top-down’ models.
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