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The Ellsberg paradox demonstrates that people’s beliefs over uncertain events might not be
representable by subjective probability. We show that if a risk averse decision maker, who has a well
defined Bayesian prior, perceives an Ellsberg type decision problem as possibly composed of a bundle of
several positively correlated problems, she will be uncertainty averse. We generalize this argument and
derive sufficient conditions for uncertainty aversion.

1. INTRODUCTION

Daniel Ellsberg’s (1961) experiments demonstrate that for many individualsrisk (known
probabilities) anduncertainty(or ambiguity—unknown probabilities) are two different notions.
Ellsberg’s examples are a direct criticism ofSavage’s (1954) normative conception that
uncertainty may be treated similarly to risk, when subjective probability, which is derived
from preferences, replaces the objective probability in the von Neumann–Morgenstern theory
of expected utility. In fact, the Ellsberg paradox is inconsistent with Mark Machina and David
Schmeidler’s “probabilistically sophisticated” preferences (Machina and Schmeidler, 1992)
that generalize the idea of deriving subjective probability from preferences. The existence of
subjective probability is critical in economics, where its usage is pervasive. In many cases, not
only do the results depend on the existence of subjective probability, but without it, defining the
relevant problem would become much more difficult (if not impossible).

Consider Ellsberg’s “Two Urns” problem: there are two urns, each containing 100 balls,
which can be either red or black. It is known that the first urn holds 50 red and 50 black balls.
The number of red (black) balls in the second urn is unknown. Two balls are drawn at random,
one from each urn. The subject is asked to bet on the colour of one of the balls. A correct bet
wins her $100, an incorrect guess loses nothing (and pays nothing). The modal response exhibits
uncertainty(ambiguity) aversion: the decision maker prefers a bet on red or black drawn from
the first urn to a bet on red or black drawn from the second urn, but she is indifferent between
betting on red or black in each urn separately.

In this paper we consider a perturbation of the original experiment suggested by Ellsberg,
in which more than a single ball (a bundle) may be drawn from each urn. We prove that
in this regular environment, a risk averse decision maker, who holds a Bayesian prior over
possible states of the world, and has to choose on which urn to bet, will beuncertainty averse.
Furthermore, if the decision maker does not know with certainty the structure of the environment
(that is, if a single ball or a bundle will be drawn from each urn), any small probability of aregular
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environment will lead to a decision that exhibits uncertainty aversion. The explanation bounds
the premium that the individual is willing to pay in order to discard uncertainty in favour of risk.

To relate our perturbed environment to the actual paradox, we use the framework ofRule
Rationality, which was suggested by, among others,Heiner (1983) andAumann(1997). This
paradigm claims that people’s decision making has evolved to simplerules that perform well in
most regular (common) environments.Heiner (1983) argues that rules arise because an agent
has limited cognitive abilities to identify the most preferred alternative in every environment.
Hence, she faces endogenous uncertainty in choosing the optimal alternative and, under some
conditions, is better off restricting her flexibility to simple alternatives that function relatively
well in most environments. Although Heiner was motivated by Axelrod’s findings in the repeated
Prisoners’ Dilemma, his claims are much more general. It should be emphasized, however, that
although Heiner presents “rule rationality” as a case of “bounded rationality”, this interpretation
is not required for the current paper. We only show that the rule of being uncertainty averse is
rational in the bundled (regular) environment, and do not derive an uncertainty averse rule as a
constrained rational choice. The application of the rule to the standard Ellsberg paradox may be a
result of bounded rationality (as Heiner argues) or just irrational (due to inertia or error). Another
prominent advocate of “rule rationality” isAumann(1997), who restricts attention to repeated
interactions and contrasts strategies in repeated games with strategies in the one shot game
(what he callsAct Rationality). Motivated by empirical studies of the Ultimatum Game (Güth,
Schmittberger and Schwarze(1982), Binmore, Shaked and Sutton(1985)), Aumann argues that
the rule of rejecting low offers has been determined in an evolutionary process. This process
rewards a behaviour that utilizes a rule which works well in most environments,i.e. it is optimal
for a regular (in Aumann’s terminology—repeated) environment. When applying the decision
rule to a singular (in Aumann’s terminology—one shot) environment,1 the behaviour may be
hard to rationalize.

Theregular environment considered in this paper consists of a bundle of several positively
correlated risks. We argue that environments in which people make decisions under uncertainty
are frequentlyregular. An example of a decision in such an environment is the purchase of a car.
Suppose the decision maker cares about the pay-off distribution of the repair cost during the first
year after purchasing a car. These costs are thesumof repair costs of the different components
of the car. The repair cost of each component is risky, but the risk that every component will
malfunction during the first year depends on the state of the car (which depends, for example, on
previous owners). The better the state of the car, the lower the probability that each component
will need repair. Hence, the repair costs of different components are positively correlated. The
decision is whether to buy the car (including all its components) and to face the uncertain
aggregate repair cost, or not. Our metaphor for a risky environment is an environment in which
the agent knows the state of the car, and faces the randomness implied by mechanics. In an
uncertain (ambiguous) environment, the agent does not know for certain the state of the car. She
may have a prior belief as regards the state of the car, but we show that it does not collapse to
the risky environment since one decision (to buy the car) spans multiple risks that are correlated
through the state of the world (car). The above argument could be easily adapted to many other
decision problems, such as purchasing a house, getting married, choosing a new workplace and
becoming a member of a club.

In the following section, we present our resolution to Ellsberg’s “Two Urns” paradox.
Next, we generalize the example and establish formally the relation between behavioural rules
and uncertainty aversion, namely, we derive conditions under which uncertainty aversion may

1. Either because the individual applies a decision rule which is already “hard wired” into their decision making
for similar (regular) environments, or she does not understand the singularity of the basic environment.
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be rationalized as a Bayesian rule in an environment consisting of bundled risks. The paper
concludes with a discussion of the results, a comparison to the current literature on uncertainty
aversion and bounded rationality, and a conjecture concerning the relation between uncertainty
aversion and other behavioural anomalies.

2. A BAYESIAN RESOLUTION OF ELLSBERG’S PARADOX

This section demonstrates how the concept of “rule rationality” could be applied to the famous
Ellsberg’s paradox, which motivates a substantial part of the literature on uncertainty aversion.
We use the “Two Urns” example, which was presented in the Introduction. The “Single Urn”
(with three colours) example (Ellsberg, 1961) could be treated similarly. Note that we use some
simplifying assumptions that are not necessary (the more general case is analysed inSection3).

The decision maker—Alice—has learned from experience (though perhaps not consciously)
that some circumstances are not isolated (singular), but that frequently similar risks are bundled.
The regular environment in which she evaluates uncertain prospects consists of bundled risks.
When asked which bet she prefers, she applies therule that has evolved in this regular–bundled
environment. Our goal is to characterize the regular environment and analyse the preferences
that the decision maker has in this environment. The original Ellsberg experiment constitutes
the singular environment in this paradigm. For simplicity of the initial exposition, we assume
that the regular environment consists of two Ellsberg singular experiments, which are perfectly
correlated. There are two typeI urns (risky), and two typeII urns (ambiguous). By perfect
correlation, it is meant here that the two urns have the same colour composition. Alice’s choice
set consists of betting on one colour from the (two) risky urns, or on one colour from the (two)
uncertain urns.2 Alice’s pay-off is the sum of her pay-offs in each draw.

The distribution of the monetary prize if Alice bets on red (or black) from the urns with a
known probability of12 (urns of typeI ) is

IR(2) = IB(2) =


$0 1/4

$100 1/2

$200 1/4.

(1)

When considering the ambiguous urns, Alice might3 apply the statistical principle ofinsufficient
reason.4 Therefore, she has a prior belief as regards the number of red balls contained in them,
which assigns a probability of1101 to every frequency between 0 and 100 (thusp, the proportion
of red balls in the ambiguous urns, is between 0 and 1). Conditional onp, the probability that two
red balls would be drawn from the ambiguous urns (i.e.winning $200 if betting on red) isp2, the
probability of two black balls (i.e. winning $0 if betting on red) is(1 − p)2, and the probability
of one red ball and one black ball (i.e. a total prize of $100 if betting on red) is 2p(1 − p).
According to the Bayesian paradigm, Alice should average these values over the differentp in
the support of her prior belief. Hence the probability of winning $200 and $0 is∑100
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(
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100
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∑100
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∼=
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3
. (2)

2. Alternatively, two balls will be drawn (with replacement) from each urn.
3. None of the results depend on this assumption. As will be clear fromSection3, all that is required is that Alice

is indifferent between betting on red or black from the typeII urns. This is guaranteed by any symmetric prior.
4. The principle of insufficient reason states that if one does not have a reason to suspect that one state is more

likely than the other, then by symmetry the states are equally likely, and equal probabilities should be assigned to them.
The reader is referred toSavage(1954, Chapter 4, Section 5) for a discussion of the principle in relation to subjective
probability.
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Therefore, the expected (according to the uniform prior) distribution of the monetary pay-off
from betting on the ambiguous urns is

IIR(2) = IIB(2) =


$0 1/3

$100 1/3

$200 1/3.

(3)

It follows that IR(2) and IB(2) second order stochastically dominate IIR(2) and IIB(2) (i.e. the
latter two are mean preserving spreads of the former).5 If Alice is averse to mean preserving
spreads, she will prefer to bet on the risky urns. Furthermore, if her preferences are represented
by an expected utility functional (with respect to an additive probability measure), then aversion
to mean preserving spreads is a consequence of risk aversion. Therefore, if Alice isrisk averse
she will prefer a bet on the objective urns to a bet on the ambiguous urns, and will exhibit
uncertainty (ambiguity) aversion, as observed in the Ellsberg experiment. If she is a risk lover,
she will prefer the latter to the former, and exhibit uncertainty love (also behaviour predicted by
Ellsberg); whereas if she is risk neutral, she will be indifferent between the four bets.

In the case of two draws and a uniform prior, but without dependence on her risk aversion,
Alice will prefer to bet on the ambiguous urns, rather than bet on red from typeI urns that
contain anything less than 43 red balls. The distribution of a bet on red from the typeI urns that
contain only 42 red balls is

IR(2)

(
p =

42

100

)
= ($0,0·3364; $100,0·4872; $200,0·1764). (4)

Hence, a bet on the uncertain urns wouldfirst order stochastically dominatea bet on red from
these risky urns. Thus theuncertainty premium(in terms of probabilities) is bounded from above
by 8%. In monetary terms, this upper bound is equivalent to $16:6

E

(
IB(2)

(
p =

1

2

))
− E

(
IB(2)

(
p =

42

100

))
= $100− $84= $16. (5)

The only assumption relied upon in this argument is monotonicity of the preference relation
with respect to first and second order stochastic dominance. Therefore, this explanation is
consistent withanytheory of choice under risk that exhibits aversion to mean preserving spreads,
including expected utility with diminishing marginal utility of wealth, as well as most non-
expected utility theories of choice under risk.

The logic developed above extends to regular environments composed of any number of
bundled risks. Assume that Alice compares the distribution of betting onr concurrentIR (IB)
to r concurrentIIR (IIB) as in the Ellsberg experiment. The money gained is distributed 100X
whereX has a binomial distribution with parameters(0·5, r ) and(p, r ), respectively. Ifp, the
proportion of red balls in the ambiguous urns, is distributed uniformly on[0,1], then, for every
0 ≤ k ≤ r,7

5. For formal definitions of first and second order stochastic dominance seeRothschild and Stiglitz(1970) and
AppendixA.

6. These bounds depend on the uniform prior assumption. Assuming only symmetry of the prior, the lower bound
on the number of red balls in the typeI urn would be 29.

7. TheBeta Integralis defined by

Beta(m + 1,n + 1) =

∫ 1

0
pm(1 − p)ndp =

0(m + 1)0(n + 1)

0(m + n + 2)

where0(α) =
∫

∞

0 pα−1e−pdp for α > 0, and it is a well known result that whenk is a natural number,0(k) = (k−1)!.
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That is, the expected distribution ofIIR(r ) andIIB(r ) is uniform, and is second order stochastically
dominated by the binomialIR(r ) andIB(r ).

The only relation between the two ambiguous risks needed to justify uncertainty aversion
is a positive correlation. Letp1 and p2 be the relative frequencies of red balls in the first
and second ambiguous urns, respectively. It is simple to verify that ifCorr(p1, p2) > 0 then
E(p1 p2) = E((1 − p1)(1 − p2)) >

1
4, and therefore a bet on the ambiguous urns is a mean

preserving spread of a bet on the risky (known probabilities of 0·5) urns.
Note that Alice does not need to assign probability one to the regular (bundled) experiment

in order to prefer a bet on the risky urns. In most cases we do not know (or do not understand)
with certainty the environment in which we have to make decisions. Alice might have learned
from her experience that some risks are bundled, but some are isolated. Even if the probability
of a correlated risk is very small, she would prefer a bet on the risky (typeI ) urns. This is
a consequence of a “Sure Thing Principle” argument: if there is only a singular risk, she is
indifferent between betting on urnI or urn II , and in the case of bundling, she strictly prefers
the former. Hence the conclusion that she prefers risk over ambiguity, even when she faces the
slightest possibility of a regular environment. Thus, in the case of environmental uncertainties,
the paradoxical Ellsberg choices may be fully rationalized.8

3. THE GENERAL FRAMEWORK

The natural framework for generalizing Ellsberg’s examples is Anscombe–Aumann’s
(Anscombe and Aumann, 1963) horse bets over roulette lotteries, in which objective and
subjective probabilities coexist. In this section we define the regular environment which consists
of bundled acts. We prove that if a decision maker is risk averse, their preferences among bundled
acts would exhibit “uncertainty aversion” (Schmeidler, 1989).

3.1. Uncertainty aversion

LetX be a finite set of monetaryoutcomes,R the set of finitely supported (roulette) lotteriesover
X , and assume a preference ordering overR that satisfies the usual expected utility assumptions.
Therefore, there exists a von Neumann–Morgenstern utility functionu(·), such that lotteryρ1
is preferred to lotteryρ2 if and only if

∑
x∈X ρ1(x)u(x) >

∑
x∈X ρ2(x)u(x). Let S be a finite

(non-empty) set ofstates of the world. In Ellsberg’s “Two Urns” example, states of the world
represent the number of red balls in the second urn:S = {0, . . . ,100}. An act (horse lottery) is a
function fromS toR. That is, it is a compound lottery, in which the prizes are roulette lotteries.
Let H denote the set of acts. Define a convex combination over elements ofH as a pointwise
mixture. That is, for everyf, g ∈ H and 0≤ α ≤ 1, the holder of( f, α; g,1− α) will receive in
every states ∈ S the compound lottery( f (s), α; g(s),1 − α). Assume that preferences overH
satisfy independence (Schmeidler, 1989). As a result, if the decision maker is indifferent between

8. Note, however, that as the probability of a regular environment decreases, the uncertainty premium will
decrease as well.
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f andg, then she is indifferent between the two and the lottery( f, α; g,1 − α). An example
of such statewise mixture in the “Two Urns” example is the compound lottery(IIR, 1

2; IIB 1
2).

Assuming that the decision maker abides by the Reduction of Compound Lotteries Axiom (Segal,
1987, 1990), it is easy to verify that this compound lottery is equal to betting onIR. Since
Alice is indifferent betweenIIR and IIB, but prefersIR to either, her preferences in Ellsberg’s
example violate at least one of the assumptions: Reduction of Compound Lotteries (Segal, 1987)
or Independence overH (Schmeidler, 1989).

Schmeidler(1989) was the first to define uncertainty aversion, using the Anscombe–
Aumann framework. Formally:

Definition1 (Schmeidler, 1989). A decision maker isUncertainty Averseif, for each pair
of acts f andg, f indifferent tog implies that every convex combination off andg is preferred
to f (and tog).

In Schmeidler’s (1989) model of Choquet expected utility, this can be strict only for acts
that are non-comonotonic, as defined below:

Definition2 (Schmeidler, 1989). Two acts f andg arecomonotonicif for no s, s′
∈ S :

f (s) � f (s′) andg(s′) � g(s).

In the context of Choquet expected utility it would be reasonable to define a decision maker
to be strictly uncertainty averse if she prefers any convex combination of every two non-
comonotonic actsf and g, between which she is indifferent, tof and g. In Ellsberg’s “Two
Urns” example,IIR and IIB are not comonotonic since as the number of red balls in the
second urn becomes higher,IIR becomes more favourable andIIB becomes less favourable.
Hence, strict preference ofIR(=(IIR, 1

2; IIB, 1
2)) to IIR is evidence of strict uncertainty

aversion.
It should be noted that the same definition of uncertainty aversion is employed byGilboa

and Schmeidler(1989) as one of their axioms in deriving the Maximin Expected Utility
representation. However, in the MEU representation uncertainty aversion may be strict even for
some comonotonic acts (for a characterization of the set seeGhirardato, Klibanoff and Marinacci
(1998)).

3.2. Theregularenvironment

Uncertainty averse behaviour is explained intuitively as the agent “hedging” between two acts.
However, in the Ellsberg examples, there are opportunities for “hedging” that are in some sense
stronger than those entailed by non-comonotonicity alone. In these experiments, the lotteries
assigned byIIR andIIB are ranked according to First Order Stochastic Dominance criterion in
every state in which they differ. That is,everyagent with monotone preferences would prefer
IIR(s) to IIB(s) if 51 ≤ s ≤ 100 andIIB(s) to IIR(s) if 0 ≤ s ≤ 49. Hence, we can compare the
agent’s utility from different acts at a specific state. Therefore, the hedging behaviour could be
interpreted as more fundamental, and independent of the agent’s utility function. This distinction
is critical in the framework of “bundled acts”.

LetX ,R, SandH be defined as above.

Definition3. Acts f and g in H are Statewise Ranked by First Order Stochastic
Dominanceif f 6= g and, at every states in which they differ, f (s) First Order Stochastically
Dominates (FOSD)g(s) or vice versa.
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We prove that if preferences are defined over bundled acts in theregular environment (with
more than a single lottery at every state), a seemingly uncertainty averse behaviour emerges,
when the original acts are Statewise Ranked by FOSD.

Definition4. A Bundled Act f(r ) is a function fromS to the sum (convolution) ofr > 1
independent and identical lotteries over outcomes. The set of all bundled acts is theRegular
Environmentand is denoted byH(r ).

Note, that according to Definition4, the set of acts,H, constitutes theSingular Environment
in this setting. In the regular environment, every state,s, is assigned a “bundle” of lotteries. In
the formal definition, we assume that conditional on the state, lotteries are independent and
identically distributed. That is, the bundle consists ofr independent draws from one lottery
(denoted byf (s)). To relate Definition4 to our resolution of the Ellsberg experiment presented
above, note that a bundled act (in the regular environment) bundles a bet on all the typeII or type
I urns. The condition that the lotteries are conditionally (on the state) independent and identically
distributed is a generalization of the “same colour composition” in the typeII urns. For example,
the bundled actIIR(2) assigns to every state (frequency of red balls in the typeII urns) the sum
of two independent draws from the ambiguous urns. Relating to the car example presented in the
Introduction, the regular environment captures the idea that for a given car condition (state) the
risk associated with the state of the transmission is independent of the risk associated with the
state of the engine. That is, the correlation is generated by the state of the car. The dimensionality
of the regular environment is indexed byr . Consider the agent’s preferences over the regular
environment. She is indifferent between the bundled actsf(r ) andg(r ) if

U ( f(r )) = U (g(r )). (7)

Denote byq(s) the subjective probability of states. Then (7) can be written explicitly as∑
s∈S

q(s)E[u( f(r )(s))] =

∑
s∈S

q(s)E[u(g(r )(s))] (8)

whereE[u( f(r )(s))] is the agent’s expected utility from the sum ofr (objective) lotteries that
f assigns to states. In what follows we taker = 2 (it will be sufficient to produce uncertainty
averse behaviour). Then,

E[u( f(2)(s))] =

∑
x∈X

∑
y∈X

f (s)(x) f (s)(y)u(x + y) (9)

where f (s)(x) and f (s)(y) are the probabilities of outcomesx andy, respectively, according to
the objective lotteryf (s).

The following theorem gives a generalization of our main result. If the acts satisfy
Definition 3, as the Ellsberg examples do, and preferences are defined over the regular
environment (i.e. bundled acts), “uncertainty aversion” is a consequence of a Bayesian prior
and risk aversion.

Theorem 1. If f and g are Statewise Ranked by FOSD and the agent is indifferent
between the bundled act f(2) and the bundled act g(2), then if she is averse to mean preserving
spreads and her preferences are representable by an expected utility functional, she will prefer
the bundled act of( f, α; g,1 − α)(2) over the bundled act f(2) for every0< α < 1.

Proof. See the Appendix. ‖

To gain intuition that motivates the theorem, leth(2) be ( f, α; g,1 − α)(2). That is, the
bundled act where in states the decision maker receives two independent draws from the lottery
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( f (s), α; g(s),1− α). The two draws from the lotteryh will both come from f with probability
α2 and both fromg with probability(1−α)2. Since f(2) ∼ g(2), the agent’s expected utility from
h(2) conditional on either event is equal to her conditional expected utility fromf(2). Hence the
comparison betweenh(2) and f(2) hinges entirely on whetherh is better or worse conditional on
the event that one draw comes fromf and one fromg. Since f andg are Statewise Ranked by
FOSD, one draw from each distribution is less risky (on average) than two draws from one, so
every risk averse agent will preferh.

The implication of Theorem1 is that if the perception of a risk averse agent is that a decision
will span multiple ambiguous risks, and the acts satisfy the condition of Statewise Ranking by
FOSD, then their observed behaviour would exhibit uncertainty aversion.

Uncertainty averse behaviour may be fully rationalized if the individual assigns a small
probability that the environment she is facing is regular. The source of this belief is the agent’s
experience that some environments are regular and some are singular. Confronted with a new
situation, if the individual’s heuristic belief assigns some (possibly small) probability to the
possibility that she faces a regular environment, then her optimal behaviour would exhibit
uncertainty aversion.

Corollary 1. Assume f and g as in Theorem1, and suppose the individual is indifferent
between the acts f and g too. Then, for everyβ > 0 probability of a regular environment, she
will prefer a lottery between the two acts(or bundled acts—with probabilityβ) over each act(or
bundled act—with probabilityβ).

Proof. Since( f, α; g,1 − α)(2) � f(2) and ( f, α; g,1 − α) ∼ f , it follows from the
independence axiom that

[( f, α; g,1 − α)(2), β; ( f, α; g,1 − α),1 − β] � [ f(2), β; f,1 − β]. ‖

The corollary may be interpreted as a learning argument in the development of a rule. Since
the agent is indifferent between the two singular actsf and( f, α; g,1 − α), the bundled acts
f(2) and ( f, α; g,1 − α)(2) serve as “tie-breaking”. Hence if the agent develops one rule to
decide in similar environments (where the regular and the singular environments are considered
subjectively similar), this rule will choose( f, α; g,1 − α).

3.3. Are the conditions necessary?

Theorem1 shows that whenf and g are Statewise Ranked by FOSD then preferences over
bundled acts will exhibit uncertainty aversion. The following example shows that when this
condition is not satisfied, uncertainty aversion or uncertainty loving among bundled acts may
result (depending on the specific utility function). Hence, this condition alone is not necessary
for uncertainty aversion among bundled acts. It is left for future research to fully characterize
preferences on this domain.
Let the utility function be

u(x) =

{
x x ≤ γ

γ x > γ
(10)

for someγ > 0. Assume two states of the worlds, t with equal subjective probability. The two
acts f , g are

f (s) = g(t) =

{
3 0·5

2 0·5
f (t) = g(s) =

{
4 0·5

1 0·5.
(11)
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The two acts are non-comonotonic (the state lotteries are ranked by second order stochastic
dominance) for 1< γ < 4 and the individual is indifferent between them. Therefore, uncertainty
aversion would claim that she prefers the mixture of the two over each act separately. However,
a short calculation shows that our explanation of preference over bundled acts may or may not
support uncertainty aversion in this case, depending on the parameterγ . If 1 < γ ≤ 2 the
individual is indifferent betweenf(2) and( f,0·5; g,0·5)(2), while if 2 < γ < 4 the individual
prefers the latter bundled act to the former (that is, exhibits uncertainty aversion).

A utility function that exhibits strict uncertainty loving for the above acts is given by

u(x) =


x x ≤ 3
x+3

2 3< x < 5

4 x ≥ 5.

(12)

Here,U ( f(2)) > U (( f,0·5; g,0·5)(2)).
The intuition that motivates the above examples is that in the absence of Statewise Ranking

by FOSD, diminishing marginal utility of wealth does not impose enough restrictions on the
preference over bundled acts to imply ambiguity aversion.

4. DISCUSSION AND CONCLUSIONS

This work shows that a perturbation of the Ellsberg paradox’s environment leads to uncertainty
averse behaviour which is consistent with expected utility theory and Bayesian rationality. If
one uses “rule rationality”, then human behaviour may exhibit insensitivity to the details of the
environment, and uncertainty aversion becomes a very plausible prediction even in the standard
environment.

4.1. Comparison with the literature

The Ellsberg paradox motivated an extensive literature that tried to explain this predicted
behaviour. In this section we shall discuss only a few alternative resolutions.

The Maximin Expected Utility (MEU) model, which was axiomatized byGilboa and
Schmeidler(1989) and Casadesus-Masanell, Klibanoff and Ozdenoren(2000), derives from
individual’s preferences a convex set of priors. The decision maker chooses the act that
maximizes their expected utility if the worst prior, included in the set of priors, occurs (Maximin
over a convex set of priors). Note that the MEU model does not imply extreme pessimism, since
the set of priors itself is endogenously derived from preferences. Hence conservatism in the
Maximin framework is measured by the size of this set. For example, the set[0,1] corresponds
to extreme pessimism, while smaller sets correspond to more moderate conservatism.Gilboa
(1987) andSchmeidler(1989) derived the Choquet expected utility representation, which is a
special case of the Maximin model if the capacity is convex. Uncertainty Aversion was first
defined in this context. We point out that the preferences over bundled acts suggested in this
paper, and the MEU model are two distinct representations, and are not equivalent. The following
thought experiment may sharpen the difference (beyond the example in the previous section):
Suppose a third urn containing 100 balls (red or black) is added to the original two urns in the
Ellsberg example. The composition of this urn is determined by a lottery that assigns probabilities
0 ≤ π j ≤ 1 that the number of red balls isj = 0, . . . ,100 and

∑100
j =0π j = 1. Furthermore,

assume thatπ is symmetric, that is:π100− j = π j . The subject is asked to bet on the colour of a
ball drawn, before she knows the result of the lotteryπ . Note that urnIII is completely objective
and is composed of lotteries with two stages. According to the MEU model, the decision maker
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should be indifferent between betting on the first urn (known 50–50 composition) and the third,
and as long as the set of priors is symmetric and non-singleton, a bet on either should be preferred
to a bet on the ambiguous (second) urn. This is a result of the “reduction of compound lotteries”
assumption, included in the expected utility treatment of objective uncertainty (risk) within the
MEU model. According to the theory of preferences over bundled acts proposed here, the subject
will rank the first urn highest (as long as the subjective and the objective priors are not a point
mass on a composition of 50–50), and then rank urnsII and III according to the dispersions
of q (the subjective prior on urnII ) and π (the objective prior on urnIII ). For example, if
π0 = π100 = 0·5, all risk averse individuals will weakly prefer the ambiguous urn over the
third urn. The above predictions may enable us to compare empirically between the theories.

As shown in the above thought experiment, the theory presented in this paper allows for an
aversion to known second order probabilities, through the bundling effect. This main feature of
our theory is present in UziSegal’s (1987) work as well. He analyses ambiguous prospects as
lotteries with two stages (similar to the framework here): first a probability is chosen according
to some prior belief distribution, and then a second lottery is performed. Segal relaxes the
Reduction of Compound Lotteries Axiom, and replaces the one stage Mixture Independence
with Compound Independence (Segal, 1990). This allows him to consider utility functions that
are more general than expected utility. An ambiguous lottery is evaluated by replacing each
second stage lottery with its certainty equivalent. Segal shows that for Anticipated Utility,9

risk aversion and reasonable restrictions on the transformation of probabilities function may
rationalize the Ellsberg paradox. Hence, the two theories share the causation between risk
aversion and uncertainty aversion. However, these are different explanations: Segal’s theory
relies on non-expected utility. Both the second and first stage lotteries are evaluated according
to a non-expected utility model. If the utility function were to be linear in probabilities, the
ambiguous lottery would give the same pay-off as its expected risky counterpart. Under the
theory presented here, the lottery at each state is replaced by the sum (convolution) of two
conditionally independent lotteries, which we call a regular act. Even if the convolution is
evaluated using the expected utility function (as inSection3), the convolution operator itself
makes the evaluation of the second stage non-linear in probabilities, and leads to the violation of
the reduction axiom. More specifically, the bundling effect causes the pay-off at the second stage
to be a quadratic function of the probabilities:

U (IIR(2) | p) = p2
[u(200)− 2u(100)+ u(0)] + 2p[u(100)− u(0)] + u(0). (13)

Monotonicity and risk aversion imply that this is a concave function ofp. Since the first stage
is evaluated using the expected utility (which is linear inp), the concavity inp implies that the
decision maker will be averse to mean preserving spreads inp. If one calculates an expression
similar to (13) for an arbitrary prizex, then∂U (IIR(2) | p)/∂x = 2p2u′(2x)+ 2p(1 − p)u′(x).
That is, the weight attached to the marginal utility at 2x is higher than the weight that the
consequence 2x receives in calculating (13). Furthermore, the second derivative of (13) assigns
an even higher weight tou′′(2x).

To compare these findings to Segal’s, note that the expression corresponding to (13) in Segal
is

V(IIR | p) = v(0)+ [v(100)− v(0)] f (p) (14)

wherev(·) is the decision maker’s cardinal utility index, andf (·) is their decision weights
function satisfying f (0) = 0 and f (1) = 1. It is easy to see that the curvature of (14) as
a function of the prize is determined by the curvature ofv at the prize. Unlike the bundling

9. Similar analysis could be done for other non-expected utility functions.
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model case, the first stage evaluation in Segal’s model is not linear in probabilities.Segal(1987)
derived sufficient conditions onf (·) that will generate Ellsberg type behaviour. Those conditions
are slightly stronger than risk aversion in the theory of anticipated utility, and are related to
conditions that can generate Allais type behaviour using this functional form.

The two theories (Segal(1987) and the bundling theory presented here) have different
predictions for the thought experiment presented above (using a third urn). A decision maker
who follows Segal’s theory would be indifferent between the risky (first) urn and a third urn
with extreme dispersion ofπ0 = π100 = 0·5. Another decision maker who has preferences over
bundled acts as this paper suggests, and is risk averse, will strictly prefer the first urn to the third
extreme urn, and will weakly prefer the ambiguous urn to the extreme urn. In an experiment
conducted byHalevy (2004) he found strong experimental support for both patterns of choices
in the population.Yates and Zukowski(1976) considered a similar third urn with a uniformπ .
They found that, on average, subjects valued urnI more than urnIII , and urnIII more than urn
II .10

Recently, Nau (2002), Ergin and Gul (2004) and Klibanoff, Marinacci and Mukerji
(2004) developedSegal’s (1987) approach, focusing on the violation of the reduction axiom
in explaining ambiguity aversion. Although the goals of the three papers are different, they
all assume that the decision maker has a prior belief as regards the possible realization of the
probability distribution, but since she does not reduce probabilities between this stage and the
second stage in which objective lotteries are performed, this allows the capture of her ambiguity
attitudes.Nau(2002) emphasizes that the utility could be state dependent,Ergin and Gul(2004)
allow for probabilistically sophisticated preferences andKlibanoff et al. (2004) concentrate on
expected utility valuation without imposing reduction.

It is of interest to study the degree of risk aversion implied by the proposed theory of
bundling. For simplicity, consider an arbitrary lottery (with no ambiguity)p. Let c(p) be the
certainty equivalent ofp defined by the implicit relationp ∼ δc(p) whereδx is the degenerate
lottery that paysx with certainty. Now consider bundling two such lotteries, and compare the
certainty equivalent of the bundled lottery to the certainty equivalent of the original lottery.11

If u(·) is exponential—that is, exhibits constant absolute risk aversion, it can be shown that
the certainty equivalent of the bundled (compound) lottery,p(2), is exactly twice the certainty
equivalent ofp. That is, bundling does not change the risk attitudes of the decision maker.
However, if one allows for wealth effects, this will not be true any longer. That is, the risk
attitudes of the agent will be a function of how “big” the bundle that she evaluates is. This is
an important line of research, which we plan to pursue in the future, since it relates ambiguity
aversion (the current paper) to risk attitudes over a sequence of lotteries (Samuelson, 1963).

Morris (1997) takes a strategic approach, and argues that the unattractiveness of the
ambiguous urn is a result of the asymmetry in information between the experimenter and the
subject. This approach may rationalize a lower willingness to bet on one colour from the
ambiguous urn, but when bets on both colours are offered (as in the original Ellsberg example) the
individual should behave non-strategically. Morris argues, along the lines of “rule rationality”,
that individuals utilize their experience from situations of asymmetric information in responding
to Ellsberg’s paradox.

10. Yates and Zukowski(1976) averaged the minimum selling price of a chosen lottery, for different individuals.
Hence, their results involve interpersonal comparisons, and should be treated carefully.

11. This problem is closely related to Samuelson’s “Fallacy of Large Numbers” (Samuelson, 1963), which shows
that if an expected utility maximizer rejects a certain bet at all wealth levels, she should reject any sum of independent
repetitions of this bet. However, as pointed out by many authors (e.g.Ross, 1999), allowing for a wealth effect may lead
to the acceptance of the sum of bets. If, on the other hand, expected utility is relaxed,Chew and Epstein(1988) have
shown that acceptance of the sum of bets may be consistent with Weighted Utility and Anticipated Utility.
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Note that the formal model presented in this paper is silent as to whether the risks are
bundled or repeated. In the latter case, the results could be interpreted as a “policy” of preferring
a sequence of risky bets to a sequence of ambiguous bets.Hazen(1992) shows (similarly to the
example inSection2) that a risk averse policy maker who is an expected utility maximizer and
faces more than a single repetition of the Ellsberg problem will exhibit uncertainty aversion.
Schneeweiss(1999) analyses the Ellsberg paradox assuming that the number of repetitions
approaches infinity and the utility function is quadratic.12 Both works are limited to the Ellsberg
example, and do not explore how general the result is.13 Furthermore, the “policy” interpretation
of the results is vulnerable to considerable limitations on the rules considered. For example,
the decision maker cannot learn from one repetition to the next (for the optimal strategy in this
case seeMüller and Scarsini(2002)), and cannot alternate (hedge) between different ambiguous
risks.14 Hence, the decision maker is not rational even in the repeated environment.

Note that our notion of bounded rationality included in the “Rule Rationality” description is
distinct from the Case Based Decision Theory (CBDT) studied byGilboa and Schmeidler(1995).
Their theory is aimed at describing situations where the state space is unknown to the decision
maker. A case in their theory is described by the triplet (problem, act, outcome). The decision
maker evaluates each act according to her average pay-off when this act was taken in “similar”
problems that she can recall, weighted by how similar the problems are. Clearly, the theory
presented here is not formally related to CBDT. Here, the decision maker knows the possible
states of the world, and uses this information extensively. However, the notion of “similarity”,
which is used inRubinstein(1988) as well, may be incorporated into the current model. The
decision maker views the singular and the regular environments as similar, and it leads her to
prefer risky acts over ambiguous acts in the singular environment as well.

4.2. Uncertainty aversion

Schmeidler’s (1989) definition of uncertainty aversion (Definition1), which was used byGilboa
and Schmeidler(1989) as well, is nested within the Anscombe–Aumann framework (Anscombe
and Aumann, 1963). This framework has some drawbacks due to its compound lottery structure.
Casadesus-Masanellet al. (2000), who present an axiomatization of Maximin Expected Utility in
a completely subjective world without lotteries, provide an analogue to Schmeidler’s definition
of uncertainty aversion—without objective lotteries.

Other definitions of uncertainty aversion, which differ from Schmeidler’s, have appeared
in the literature.Epstein (1999) defines uncertainty aversion relative to probabilistically
sophisticated preferences, whileGhirardato and Marinacci(2002) define it relative to subjective
expected utility. A one stage axiomatization of expected utility, that allows for objective lotteries,
was suggested bySarin and Wakker(1997), but the definition of uncertainty aversion in their
original framework is not transparent and will be different (Sarin and Wakker, 1992) from
Schmeidler’s.Klibanoff et al. (2004) employ this framework while relaxing the Reduction
of Compound Lotteries axiom, to definesmooth ambiguity aversionas an aversion to mean
preserving spreads in theex anteevaluation of an act (similar to risk aversion in objective
expected utility). The exact way in which the behaviour described in this paper relates to those
alternative definitions remains a subject for future work.

12. We thank Gordon Hazen and Hans Schneeweiss for bringing their works to our attention.
13. Both works assume expected utility (and even more restrictive functional forms), while, as shown inSection

2, the only requirement is aversion to mean preserving spreads.
14. It is easy to show that if the decision maker faces repeated draws (with replacement) from the two Ellsberg urns,

then even if she cannot learn (that is, has to have a “policy”), mixing between bets on the uncertain (II ) urn—that is, choos-
ing a policy of(IIR, IIB, IIR, IIB, . . .)—second order stochastically dominates bets on the risky (I ) urn. Hence, a risk
averse decision maker who faces a sequence of draws will prefer bets using the uncertain urn to bets using the risky urn.
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4.3. “Rule rationality” and other experimental anomalies

An underlying feature of the explanation presented here is that individuals treat a single draw
from an Ellsberg urn (an act) the same way that they treat multiple draws from the urn (a
bundled act). Many studies in psychology have focused on how individuals update their belief.
Although there is no updating of belief per se in this paper, we believe that there is a close
connection between the two phenomena.15 Tversky and Kahneman(1971) first noted that
people consistently overestimate the distributional similarity between a small sample and the
population, and named this behaviour “the law of small numbers”. This goes both ways—from
the sample to the population, and vice versa.Bar-Hillel and Wagenaar(1991) concentrate on
“local representativeness” bias, when people expect even a short sequence of signals to have
the same proportions of signals as a much longer (or infinite) sequence.Grether(1980) and
Camerer(1987) test whether individuals and markets are Bayesian and find support for bias in
a direction of “exact representativeness”, in which agents tend to believe that the (unknown)
population’s distribution is similar to the small sample’s distribution. These observations were
modelled and applied byRabin(2002) to a variety of economic scenarios. These behavioural
regularities may illuminate our current study and give our explanation an alternative motivation:
if we reinterpret the prior as representing a “population”, then the risky population (generated by
urn I ) second order stochastically dominates the uncertain population (generated by urnII ). If
the decision maker exhibits “local representativeness” she expects these relative properties of the
distributions to be maintained even for a small sample (in our case of size one), and hence will
be uncertainty averse. We believe that the relation between the two phenomena requires further
experimental study.

As discussed in the Introduction, two other prominent experimental anomalies, that
initially seem unrelated to uncertainty aversion, are the one shot “Prisoners’ Dilemma” and
the “Ultimatum Game”. In the first example, almost all normative notions of equilibrium
(except when agents have unobserved utility from cooperation) predict that individuals will
not cooperate. Yet, in practice, many subjects do indeed cooperate. In the Ultimatum Game,
the normative backward induction argument predicts that the individual who makes the offer
will leave a minimal share to his opponent, and the latter will accept any positive offer. In
practice, most offers are “fair”, and most respondents reject “unfair” (albeit positive) splits.
Explanations for these phenomena vary, but the one explanation that we find most compelling
(and which may be viewed as a strategic foundation for other explanations) claims that people
do not “understand” that these are one shot games. Individuals play a strategy which is perfectly
reasonable (according to some equilibrium notion) for a repeated game. Thus, people are, in
some sense, not “programmed” for, and therefore find it hard to evaluate, singular situations.
Aumann(1997) contrasted this“Rule Rationality” with “Act Rationality”. Hoffman, McCabe
and Smith(1996) have suggested that in the Ultimatum Game, the rule to “reject anything less
than thirty per cent” may be rationalized as building up a reputation in an environment where
the interaction is repeated. This rule does not apply to the one shot Ultimatum Game because in
that situation the player does not build up a reputation. But since the rule has been unconsciously
chosen, it will not be consciously abandoned.16

The (speculative) relation between the decision theoretic problem studied in this paper
and other anomalies in game theory leads us to hypothesize that rule rationality is a form of
limited rationality that should be studied carefully. Specifically, experiments could determine
whether certain individuals rely more than others on behavioural rules. If rule rationality is

15. We thank the Editor James Dow for pointing out this relation.
16. It may be argued that “manners” have evolved in a similar way, and explain the Proposer behaviour in Dictator

Games as a result of expected “reciprocity”.
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found to be common, it may call for reconsidering the structure of experiments in economics
and psychology. Currently, most of the experimental literature identifies a singular environment
as a good experimental design, since it enables concentration on a specific issue. However, if
individuals use in this environment their experience from more “regular” environments, the
designer should consider whether the behaviour in the experiment is robust to small perturbations
of the environment.

APPENDIX

A. PRELIMINARIES

Letψ andτ be countably additive and finite set-functions onX . Define

Fψ (x) =

∑
t≤x

ψ(t) and Fτ (x) =

∑
t≤x

τ(t). (A.1)

Assumeψ andτ are such that

Fψ (+∞) = Fτ (+∞). (A.2)

Assumption (A.2) would hold true if, for example,ψ andτ are probability measures (then (A.2) is equal to one), and
when each is a difference of two probability measures (then (A.2) is equal to zero).

DefinitionA1. Letψ andτ be countably additive and finite set-functions onX , and letFψ andFτ be defined as
in (A.1) and satisfy (A.2). The functionψ First Order Stochastic Dominates (FOSD)the functionτ if for every x ∈ X ,
Fψ (x) ≤ Fτ (x) with strict inequality for at least onex.

Definition A1 is a generalization of the standard definition of first order stochastic dominance, and it includes the
probability measure as a special case. It is well known that every decision maker with monotone preferences, choosing
between two distributions ordered by FOSD, will prefer the dominant one.

Assume:17 ∫
+∞

−∞

Fψ (x)dx =

∫
+∞

−∞

Fτ (x)dx. (A.3)

That is, the mean ofψ is equal to the mean ofτ . For example, ifψ is the difference of two probability measures and
τ ≡ 0 then it implies that the two probability distributions from whichψ was derived have the same expected value.

DefinitionA2. ψ Second Order Stochastically Dominates (SOSD)τ if (A.3) holds and∫ x

−∞

Fψ (t)dt ≤

∫ x

−∞

Fτ (t)dt ∀x ∈ X

with strict inequality for at least onex.

Claim A1. If ψ SOSDτ then

U (ψ) =

∑
x∈X u(x)ψ(x)dx >

∑
x∈X u(x)τ (x)dx = U (τ )

for all strictly monotone and strictly concave u.

Proof. The proof is similar toRothschild and Stiglitz’s (1970), using (A.2) instead of assuming probability
measures, and (A.3) instead of assuming equal expectations.‖

B. PROOF OF THEOREM 1

Let f andg be Statewise Ranked by FOSD, and

U ( f(2)) = U (g(2)). (7′)

17. Since all set-functions that we shall deal with have finite variation, all the integrals converge.
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Therefore, there exist at least two states in whichf andg differ. Define, for everys ∈ S,

h(s)(x) = α f (s)(x)+ (1 − α)g(s)(x). (B.1)

Then we need to show that

U (h(2)) > U ( f(2)). (B.2)

Consider the functionθ defined as

θ(s)(x) = f (s)(x)− g(s)(x) (B.3)

for everyx ands.
Let h(2) be the convolution (denoted by “∗”) of h with h at every state.U (h(2)) is the expected utility from this

convolution, averaged over all states:

U (h(2)) =

∑
s

q(s)U [h(s) ∗ h(s)]

=

∑
s

q(s)
∑

x

∑
y

[
α f (s)(x)

+(1 − α)g(s)(x)

] [
α f (s)(y)

+(1 − α)g(s)(y)

]
u(x + y)

=

∑
s

q(s)
∑

x

∑
y

 α2( f (s)(x))( f (s)(y))
+(1 − α)2(g(s)(x))(g(s)(y))

+2α(1 − α)( f (s)(x))(g(s)(y))

 u(x + y). (B.4)

Let θ(2) be the convolution ofθ with θ at every state. We can viewU (θ(2)) as the “expected utility” from this convolution
(note that it is additive in the states):

U (θ(2)) =

∑
s

q(s)U [θ(s) ∗ θ(s)] (B.5)

=

∑
s

q(s)
∑

x

∑
y
θ(s)(x)θ(s)(y)u(x + y)

=

∑
s

q(s)
∑

x

∑
y
[ f (s)(x)− g(s)(x)][ f (s)(y)− g(s)(y)]u(x + y)

=

∑
s

q(s)
∑

x

∑
y

 ( f (s)(x))( f (s)(y))
+(g(s)(x))(g(s)(y))
−2( f (s)(x))(g(s)(y))

 u(x + y). (B.6)

By substitution of (B.4) and (B.6) and utilizing (7′) it follows that

U (h(2))− U ( f(2)) = −α(1 − α)U (θ(2)). (B.7)

Thus, (B.2) holds if and only ifU (θ(2)) < 0.

Claim B1. In every state in which f and g differ: θ(s) FOSD0 (the zero function) or vice versa.

Proof. Since f andg are Statewise Ranked by FOSD, then if they differ at states, they are ranked according to
FOSD. Assumef (s) FOSDg(s). Then,

Fθ(s)(x) = F f (s)(x)− Fg(s)(x) ≤ 0.

The symmetric argument holds wheng(s) FOSD f (s). ‖

Lemma B1. Letξ be a function, which is the difference of two probability mass measures and assume thatξ and
0 are ranked according to first order stochastic dominance. Thenξ can be written as a finite sum of functions:

ξ =

∑L

l=1
ξl (B.8)

where

ξl (x) = ξal ,bl ,pl (x) =


pl if x = al

−pl if x = bl

0 OTHERWISE

(B.9)

with al < bl and |pl | ≤ 1. If 0 FOSDξ (ξ FOSD0) then all pl can be chosen positive(negative) in the decomposition
(B.9).
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Proof. Recall that sinceξ is a difference of probability mass measures, it is a finite set-function withFξ (+∞) = 0.
Assume that0 FOSDξ , i.e. Fξ (x) ≥ 0∀x ∈ X with strict inequality for at least onex. Then,

a1 ≡ min{x | ξ(x) > 0}

exists. SinceFξ (x) ≥ 0, it follows that for allx < a1, Fξ (x) = 0. ThereforeFξ (a1) = ξ(a1). Similarly, there exists

b1 ≡ min{x > a1 | ξ(x) < 0}.

Define

p1 ≡ min{ξ(a1), |ξ(b1)|} > 0.

Defineξ1 = ξ − ξa1b1 p1. It is still true thatF
ξ1
(x) ≥ 0, sinceF

ξ1
(·) differs from Fξ (·) only in the interval[a1,b1],

and thereFξ ≥ ξ(a1) ≥ p1. Note thatξ1 is a set-function with at least one less mass point thanξ .
Hence ifξ1 6≡ 0 then0 FOSDξ1 and we can repeat the process, obtaining iteratively(ξ2, ξ3, . . . , ξL ). Because

eachξ l has at least one less mass point thanξ l−1, andξ is finitely supported (i.e. there exist only finitely many pointsx

such thatξ(x) 6= 0), the sequence is finite. The sequence has to stop, at some stageL with ξ L ≡ 0. Henceξ ≡
∑L

l=1 ξl ,
with pl > 0 for all l .

A similar proof holds for the case whereξ FOSD0. ‖

Lemma B2. If pl pk > 0 then0 (the zero function) SOSDξl ∗ ξk (the convolution ofξl andξk), whenξl andξk
have the(B.9) structure.

Proof. The convolutionξl ∗ ξk is given by

(ξl ∗ ξk)(x) =


pl pk if x = al + ak

−pl pk if x = al + bk

−pl pk if x = bl + ak

pl pk if x = bl + bk

Fξl ∗ξk (x) =
∫ x
−∞

(ξl ∗ ξk)(t)dt is equal to:

Fξl ∗ξk (x) =


pk pl if x ∈ [al + ak,min{ak + bl ,bk + al }]

−pk pl if x ∈ [max{ak + bl ,bk + al },bk + bl ]

0 OTHERWISE.

Therefore, ∫ x

−∞

Fξl ∗ξk (t)dt ≥ 0.

That is, the zero function SOSDξl ∗ ξk. ‖

Corollary B1. In every state in which f and g differ, the zero function SOSDθ(s) ∗ θ(s).

Proof. Since f andg are Statewise Ranked by FOSD, by ClaimB1 the zero function FOSDθ(s) or vice versa.
By LemmaB1, we can decompose every difference of probability measures set-functionθ(s) into L(s) functions with
all pl (l = 1, . . . , L(s)) positive (if0 FOSDθ(s)) or negative (ifθ(s) FOSD0). Therefore,

θ(s) ∗ θ(s) =

(∑L(s)

l=1
θl (s)

)
∗

(∑L(s)

k=1
θk(s)

)
=

∑L(s)

l=1

∑L(s)

k=1
θl (s) ∗ θk(s). (B.10)

By LemmaB2 each convolution element of the above sum is second order stochastically dominated by the zero function.
Therefore, the zero function SOSD the sum of those convolutions.‖

Proof of Theorem1. Recall from (B.5) that U (θ(2)) is additive across states. By CorollaryB1 and ClaimA1:
U [θ(s) ∗ θ(s)] < 0 in every state in whichf andg differ. In states in whichf andg are equal,θ(s) ≡ 0, and therefore
U [θ(s) ∗ θ(s)] = 0. It follows thatU (θ(2)) < 0 and (B.2) holds. ‖
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