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The Ellsberg paradox demonstrates that people’s beliefs over uncertain events might not be
representable by subjective probability. We show that if a risk averse decision maker, who has a well
defined Bayesian prior, perceives an Ellsberg type decision problem as possibly composed of a bundle of
several positively correlated problems, she will be uncertainty averse. We generalize this argument and
derive sufficient conditions for uncertainty aversion.

1. INTRODUCTION

Daniel Ellsbergs (1961 experiments demonstrate that for many individuetk (known
probabilities) andincertainty(or ambiguity—unknown probabilities) are two different notions.
Ellsberg’s examples are a direct criticism 8avags (1954 normative conception that
uncertainty may be treated similarly to risk, when subjective probability, which is derived
from preferences, replaces the objective probability in the von Neumann—Morgenstern theory
of expected utility. In fact, the Ellsberg paradox is inconsistent with Mark Machina and David
Schmeidler's “probabilistically sophisticated” preferencésachina and Schmeidlerl992

that generalize the idea of deriving subjective probability from preferences. The existence of
subjective probability is critical in economics, where its usage is pervasive. In many cases, not
only do the results depend on the existence of subjective probability, but without it, defining the
relevant problem would become much more difficult (if not impossible).

Consider Ellsberg’s “Two Urns” problem: there are two urns, each containing 100 balls,
which can be either red or black. It is known that the first urn holds 50 red and 50 black balls.
The number of red (black) balls in the second urn is unknown. Two balls are drawn at random,
one from each urn. The subject is asked to bet on the colour of one of the balls. A correct bet
wins her $100, an incorrect guess loses nothing (and pays nothing). The modal response exhibits
uncertainty(ambiguity aversion the decision maker prefers a bet on red or black drawn from
the first urn to a bet on red or black drawn from the second urn, but she is indifferent between
betting on red or black in each urn separately.

In this paper we consider a perturbation of the original experiment suggested by Ellsberg,
in which more than a single ball (a bundle) may be drawn from each urn. We prove that
in this regular environment, a risk averse decision maker, who holds a Bayesian prior over
possible states of the world, and has to choose on which urn to bet, withdertainty averse
Furthermore, if the decision maker does not know with certainty the structure of the environment
(thatis, if a single ball or a bundle will be drawn from each urn), any small probabilityezfidar
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environment will lead to a decision that exhibits uncertainty aversion. The explanation bounds
the premium that the individual is willing to pay in order to discard uncertainty in favour of risk.

To relate our perturbed environment to the actual paradox, we use the framewRukeof
Rationality, which was suggested by, among othétejner (1983 and Aumann(1997. This
paradigm claims that people’s decision making has evolved to simj@sthat perform well in
mostregular (common) environmentdleiner (1983 argues that rules arise because an agent
has limited cognitive abilities to identify the most preferred alternative in every environment.
Hence, she faces endogenous uncertainty in choosing the optimal alternative and, under some
conditions, is better off restricting her flexibility to simple alternatives that function relatively
well in most environments. Although Heiner was motivated by Axelrod’s findings in the repeated
Prisoners’ Dilemma, his claims are much more general. It should be emphasized, however, that
although Heiner presents “rule rationality” as a case of “bounded rationality”, this interpretation
is not required for the current paper. We only show that the rule of being uncertainty averse is
rational in the bundled (regular) environment, and do not derive an uncertainty averse rule as a
constrained rational choice. The application of the rule to the standard Ellsberg paradox may be a
result of bounded rationality (as Heiner argues) or just irrational (due to inertia or error). Another
prominent advocate of “rule rationality” isumann (1997, who restricts attention to repeated
interactions and contrasts strategies in repeated games with strategies in the one shot game
(what he callsAct Rationality. Motivated by empirical studies of the Ultimatum Gan@&iith,
Schmittberger and Schwarg£982, Binmore, Shaked and Sutt¢h985), Aumann argues that
the rule of rejecting low offers has been determined in an evolutionary process. This process
rewards a behaviour that utilizes a rule which works well in most environmieati$,is optimal
for a regular (in Aumann’s terminology—repeated) environment. When applying the decision
rule to a singular (in Aumann’s terminology—one shot) environmetiie behaviour may be
hard to rationalize.

Theregular environment considered in this paper consists of a bundle of several positively
correlated risks. We argue that environments in which people make decisions under uncertainty
are frequentlyegular. An example of a decision in such an environment is the purchase of a car.
Suppose the decision maker cares about the pay-off distribution of the repair cost during the first
year after purchasing a car. These costs arestineof repair costs of the different components
of the car. The repair cost of each component is risky, but the risk that every component will
malfunction during the first year depends on the state of the car (which depends, for example, on
previous owners). The better the state of the car, the lower the probability that each component
will need repair. Hence, the repair costs of different components are positively correlated. The
decision is whether to buy the car (including all its components) and to face the uncertain
aggregate repair cost, or not. Our metaphor for a risky environment is an environment in which
the agent knows the state of the car, and faces the randomness implied by mechanics. In an
uncertain (ambiguous) environment, the agent does not know for certain the state of the car. She
may have a prior belief as regards the state of the car, but we show that it does not collapse to
the risky environment since one decision (to buy the car) spans multiple risks that are correlated
through the state of the world (car). The above argument could be easily adapted to many other
decision problems, such as purchasing a house, getting married, choosing a new workplace and
becoming a member of a club.

In the following section, we present our resolution to Ellsberg’s “Two Urns” paradox.
Next, we generalize the example and establish formally the relation between behavioural rules
and uncertainty aversion, namely, we derive conditions under which uncertainty aversion may

1. Either because the individual applies a decision rule which is already “hard wired” into their decision making
for similar (regular) environments, or she does not understand the singularity of the basic environment.
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be rationalized as a Bayesian rule in an environment consisting of bundled risks. The paper
concludes with a discussion of the results, a comparison to the current literature on uncertainty
aversion and bounded rationality, and a conjecture concerning the relation between uncertainty
aversion and other behavioural anomalies.

2. ABAYESIAN RESOLUTION OF ELLSBERG’S PARADOX

This section demonstrates how the concept of “rule rationality” could be applied to the famous
Ellsberg’s paradox, which motivates a substantial part of the literature on uncertainty aversion.
We use the “Two Urns” example, which was presented in the Introduction. The “Single Urn”
(with three colours) examplée(lsberg 1961) could be treated similarly. Note that we use some
simplifying assumptions that are not necessary (the more general case is analysetian3).

The decision maker—Alice—has learned from experience (though perhaps not consciously)
that some circumstances are not isolated (singular), but that frequently similar risks are bundled.
The regular environment in which she evaluates uncertain prospects consists of bundled risks.
When asked which bet she prefers, she appliesulegthat has evolved in this regular—bundled
environment. Our goal is to characterize the regular environment and analyse the preferences
that the decision maker has in this environment. The original Ellsberg experiment constitutes
the singular environment in this paradigm. For simplicity of the initial exposition, we assume
that the regular environment consists of two Ellsberg singular experiments, which are perfectly
correlated. There are two typeurns (risky), and two typél urns (ambiguous). By perfect
correlation, it is meant here that the two urns have the same colour composition. Alice’s choice
set consists of betting on one colour from the (two) risky urns, or on one colour from the (two)
uncertain urng.Alice’s pay-off is the sum of her pay-offs in each draw.

The distribution of the monetary prize if Alice bets on red (or black) from the urns with a
known probability of% (urns of typel ) is

$0 14
IR =Bz = {$100 2 (1)
$200 V4.

When considering the ambiguous urns, Alice migiqpply the statistical principle afisufficient
reason* Therefore, she has a prior belief as regards the number of red balls contained in them,
which assigns a probability q%—l to every frequency between 0 and 100 (thpshe proportion

of red balls in the ambiguous urns, is between 0 and 1). Conditiong] the probability that two

red balls would be drawn from the ambiguous uiites winning $200 if betting on red) ig?, the
probability of two black ballsi(e. winning $0 if betting on red) i$1 — p)2, and the probability

of one red ball and one black balld. a total prize of $100 if betting on red) isp2l — p).
According to the Bayesian paradigm, Alice should average these values over the diffément

the support of her prior belief. Hence the probability of winning $200 and $0 is

100 1 (i \? 100 1 i \2_ [t 1
Zi=0ﬁ(1_oo) =Zi=ol—ol<1‘1—m> =/0 prdp =3 @

2. Alternatively, two balls will be drawn (with replacement) from each urn.

3. None of the results depend on this assumption. As will be clear®&ection3, all that is required is that Alice
is indifferent between betting on red or black from the tyiperns. This is guaranteed by any symmetric prior.

4. The principle of insufficient reason states that if one does not have a reason to suspect that one state is more
likely than the other, then by symmetry the states are equally likely, and equal probabilities should be assigned to them.
The reader is referred tBavageg1954 Chapter 4, Section 5) for a discussion of the principle in relation to subjective
probability.
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Therefore, the expected (according to the uniform prior) distribution of the monetary pay-off
from betting on the ambiguous urns is

$0 13
IR =1IBz = {$100 3 3)
$200 3.

It follows that IRy and B2, second order stochastically dominate #RandIIB ) (i.e. the

latter two are mean preserving spreads of the forfhéf)Alice is averse to mean preserving
spreads, she will prefer to bet on the risky urns. Furthermore, if her preferences are represented
by an expected utility functional (with respect to an additive probability measure), then aversion
to mean preserving spreads is a consequence of risk aversion. Therefore, if Alsbeagerse

she will prefer a bet on the objective urns to a bet on the ambiguous urns, and will exhibit
uncertainty (ambiguity) aversion, as observed in the Ellsberg experiment. If she is a risk lover,
she will prefer the latter to the former, and exhibit uncertainty love (also behaviour predicted by
Ellsberg); whereas if she is risk neutral, she will be indifferent between the four bets.

In the case of two draws and a uniform prior, but without dependence on her risk aversion,
Alice will prefer to bet on the ambiguous urns, rather than bet on red from ltypens that
contain anything less than 43 red balls. The distribution of a bet on red from thé tyms that
contain only 42 red balls is

IR <p = ]j‘r—ozo) = ($0, 0-3364 $10Q 0-4872 $20Q 0-1764. (4)

Hence, a bet on the uncertain urns wofitdt order stochastically dominate bet on red from
these risky urns. Thus thencertainty premiunfin terms of probabilities) is bounded from above
by 8%. In monetary terms, this upper bound is equivalent to%$16:

E<IB(2)(p _ %)) - E(IB(2)<p _ 14_020» — $100— $84= $16. ®)

The only assumption relied upon in this argument is monotonicity of the preference relation
with respect to first and second order stochastic dominance. Therefore, this explanation is
consistent wittanytheory of choice under risk that exhibits aversion to mean preserving spreads,
including expected utility with diminishing marginal utility of wealth, as well as most non-
expected utility theories of choice under risk.

The logic developed above extends to regular environments composed of any number of
bundled risks. Assume that Alice compares the distribution of betting aamcurrentR (IB)
tor concurrentIR (lIB) as in the Ellsberg experiment. The money gained is distributec 100
where X has a binomial distribution with parametef®5, r) and (p, r), respectively. Ifp, the
proportion of red balls in the ambiguous urns, is distributed uniformlyOod], then, for every
O<k<r’

5. For formal definitions of first and second order stochastic dominancRatéechild and Stiglit1970 and
AppendixA.

6. These bounds depend on the uniform prior assumption. Assuming only symmetry of the prior, the lower bound
on the number of red balls in the typaurn would be 29.

7. TheBeta Integralis defined by

r(m+1Hrn+1

1
Betam+1,n+1) = M1 - p)dp=
q ) [Op( p)dp Fmint2

wherel™ (o) = f(§’° p®~le~Pdpfora > 0, and it is a well known result that whéris a natural number; (k) = (k—1)!.
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r\ 1 100/ s \K s\ K

1
;(r>f p"(l—p)’kdp=<r)Bete(k+1,r—k+1)
k) J; K
r! k!(r—k)!_ 1

TKr—K! t+D!  r+1 ©

That is, the expected distribution bR,y andIIB ) is uniform, and is second order stochastically
dominated by the binomidR ) andIB ).

The only relation between the two ambiguous risks needed to justify uncertainty aversion
is a positive correlation. Lep; and pp be the relative frequencies of red balls in the first
and second ambiguous urns, respectively. It is simple to verify thaoif(p1, p2) > 0 then
E(p1p2) = E(Q1 - p)(1— p2)) > ;11, and therefore a bet on the ambiguous urns is a mean
preserving spread of a bet on the risky (known probabilities ®f Orns.

Note that Alice does not need to assign probability one to the regular (bundled) experiment
in order to prefer a bet on the risky urns. In most cases we do not know (or do not understand)
with certainty the environment in which we have to make decisions. Alice might have learned
from her experience that some risks are bundled, but some are isolated. Even if the probability
of a correlated risk is very small, she would prefer a bet on the risky (typgrns. This is
a consequence of a “Sure Thing Principle” argument: if there is only a singular risk, she is
indifferent between betting on urnhor urnll, and in the case of bundling, she strictly prefers
the former. Hence the conclusion that she prefers risk over ambiguity, even when she faces the
slightest possibility of a regular environment. Thus, in the case of environmental uncertainties,
the paradoxical Ellsberg choices may be fully rationali2ed.

3. THE GENERAL FRAMEWORK

The natural framework for generalizing Ellsberg’'s examples is Anscombe—Aumann’s
(Anscombe and Aumanrl963 horse bets over roulette lotteries, in which objective and
subjective probabilities coexist. In this section we define the regular environment which consists
of bundled acts. We prove that if a decision maker is risk averse, their preferences among bundled
acts would exhibit “uncertainty aversionS¢hmeidler1989.

3.1. Uncertainty aversion

Let X be afinite set of monetagutcomegsR the set of finitely supporteddulette) lotteriesover

X, and assume a preference ordering dRehat satisfies the usual expected utility assumptions.
Therefore, there exists a von Neumann—Morgenstern utility funetion such that lotteryo;

is preferred to lottery; if and only if Y, 1 p1(OU(X) > Y, v p2(X)U(X). Let S be a finite
(non-empty) set obtates of the worldin Ellsberg’s “Two Urns” example, states of the world
represent the number of red balls in the second 8ea:{0, . .., 100}. An act(horse lotteryis a
function fromSto R. That is, it is a compound lottery, in which the prizes are roulette lotteries.
Let H denote the set of acts. Define a convex combination over elemeftfsagfa pointwise
mixture. That is, for evenyff, g € H and 0< « < 1, the holder of f, ; g, 1 — «) will receive in
every states € Sthe compound lotteryf (s), «; g(s), 1 — ). Assume that preferences ovier
satisfy independenc&¢hmeidler1989. As aresult, if the decision maker is indifferent between

8. Note, however, that as the probability of a regular environment decreases, the uncertainty premium will
decrease as well.
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f andg, then she is indifferent between the two and the lottghy; g, 1 — ). An example
of such statewise mixture in the “Two Urns” example is the compound lotiéiRy %; IIB%).
Assuming that the decision maker abides by the Reduction of Compound Lotteries /ASegaj (
1987 1990, it is easy to verify that this compound lottery is equal to bettinglRnSince
Alice is indifferent betweenlIR and|IB, but preferdR to either, her preferences in Ellsberg’s
example violate at least one of the assumptions: Reduction of Compound LotBsiegd {987
or Independence ové{ (Schmeidler1989.

Schmeidler(1989 was the first to define uncertainty aversion, using the Anscombe—
Aumann framework. Formally:

Definition1 (Schmeidler1989. A decision maker i&Jncertainty Aversd, for each pair
of actsf andg, f indifferent tog implies that every convex combination &fandg is preferred
to f (and tog).

In Schmeidles (1989 model of Choquet expected utility, this can be strict only for acts
that are non-comonotonic, as defined below:

Definition2 (Schmeidler1989. Two actsf andg arecomonotonidf forno s,s' € S:
f(s) = f(s) andg(s) > g(s).

In the context of Choquet expected utility it would be reasonable to define a decision maker
to be strictly uncertainty averse if she prefers any convex combination of every two non-
comonotonic acts and g, between which she is indifferent, tb andg. In Ellsberg’s “Two
Urns” example,lIR and IIB are not comonotonic since as the number of red balls in the
second urn becomes highéfiR becomes more favourable ahi@ becomes less favourable.
Hence, strict preference dR(=(lIR, %; 1B, %)) to IIR is evidence of strict uncertainty
aversion.

It should be noted that the same definition of uncertainty aversion is employ&ilina
and Schmeidler(1989 as one of their axioms in deriving the Maximin Expected Utility
representation. However, in the MEU representation uncertainty aversion may be strict even for
some comonotonic acts (for a characterization of the seggb@ardato, Klibanoff and Marinacci

(1998).

3.2. Theregularenvironment

Uncertainty averse behaviour is explained intuitively as the agent “hedging” between two acts.
However, in the Ellsberg examples, there are opportunities for “hedging” that are in some sense
stronger than those entailed by non-comonotonicity alone. In these experiments, the lotteries
assigned byIR andlIB are ranked according to First Order Stochastic Dominance criterion in
every state in which they differ. That isyeryagent with monotone preferences would prefer
lIR(s) tolIB(s) if 51 < s < 100 andIB(s) to lIR(s) if 0 < s < 49. Hence, we can compare the
agent’s utility from different acts at a specific state. Therefore, the hedging behaviour could be
interpreted as more fundamental, and independent of the agent’s utility function. This distinction
is critical in the framework of “bundled acts”.

Let X, R, SandH be defined as above.

Definition3. Acts f and g in H are Statewise Ranked by First Order Stochastic
Dominancef f = g and, at every state in which they differ, f (s) First Order Stochastically
Dominates (FOSDy(s) or vice versa.
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We prove that if preferences are defined over bundled acts megiodar environment (with
more than a single lottery at every state), a seemingly uncertainty averse behaviour emerges,
when the original acts are Statewise Ranked by FOSD.

Definition4. A Bundled Act ) is a function fromSto the sum (convolution) aof > 1
independent and identical lotteries over outcomes. The set of all bundled actsRedghkar
Environmen&nd is denoted b ).

Note, that according to Definitiofy the set of actsi{, constitutes th&ingular Environment
in this setting. In the regular environment, every statés assigned a “bundle” of lotteries. In
the formal definition, we assume that conditional on the state, lotteries are independent and
identically distributed. That is, the bundle consistsroihdependent draws from one lottery
(denoted byf (s)). To relate Definitiord to our resolution of the Ellsberg experiment presented
above, note that a bundled act (in the regular environment) bundles a bet on all tHeayfype
| urns. The condition that the lotteries are conditionally (on the state) independent and identically
distributed is a generalization of the “same colour composition” in the lypes. For example,
the bundled acliR 2, assigns to every state (frequency of red balls in the typens) the sum
of two independent draws from the ambiguous urns. Relating to the car example presented in the
Introduction, the regular environment captures the idea that for a given car condition (state) the
risk associated with the state of the transmission is independent of the risk associated with the
state of the engine. That s, the correlation is generated by the state of the car. The dimensionality
of the regular environment is indexed by Consider the agent’s preferences over the regular
environment. She is indifferent between the bundled &gisandg) if

U(firy)) = U9q))- (7)
Denote byg(s) the subjective probability of state Then {7) can be written explicitly as
Y SAOEL(f N =) ASEUGr)©)] ©)

where E[u(f«)(9))] is the agent’s expected utility from the sumrofobjective) lotteries that
f assigns to state In what follows we take = 2 (it will be sufficient to produce uncertainty
averse behaviour). Then,

EluCfoenl =3 >y O F WU +y) 9)

where f (s)(x) and f (s)(y) are the probabilities of outcomasandy, respectively, according to
the objective lotteryf (s).

The following theorem gives a generalization of our main result. If the acts satisfy
Definition 3, as the Ellsberg examples do, and preferences are defined over the regular
environment i(e. bundled acts), “uncertainty aversion” is a consequence of a Bayesian prior
and risk aversion.

Theorem 1. If f and g are Statewise Ranked by FOSD and the agent is indifferent
between the bundled actf and the bundled act g, then if she is averse to mean preserving
spreads and her preferences are representable by an expected utility funcsioaatill prefer
the bundled act of f, «; g, 1 — «)(2) over the bundled act for every0 < o < 1.

Proof. See the Appendix. ||

To gain intuition that motivates the theorem, tgby be (f,«; 9.1 — a)p). That is, the
bundled act where in staggthe decision maker receives two independent draws from the lottery
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(f(s), @; g(s), 1 — «). The two draws from the lottery will both come fromf with probability

o2 and both fromg with probability (1 — «)?. Sincef) ~ g, the agent’s expected utility from

h( conditional on either event is equal to her conditional expected utility ffgm Hence the
comparison betweeln», and f2) hinges entirely on whethdris better or worse conditional on

the event that one draw comes fraimand one frong. Since f andg are Statewise Ranked by
FOSD, one draw from each distribution is less risky (on average) than two draws from one, so
every risk averse agent will prefar

The implication of Theorer is that if the perception of a risk averse agent is that a decision
will span multiple ambiguous risks, and the acts satisfy the condition of Statewise Ranking by
FOSD, then their observed behaviour would exhibit uncertainty aversion.

Uncertainty averse behaviour may be fully rationalized if the individual assigns a small
probability that the environment she is facing is regular. The source of this belief is the agent’s
experience that some environments are regular and some are singular. Confronted with a new
situation, if the individual’s heuristic belief assigns some (possibly small) probability to the
possibility that she faces a regular environment, then her optimal behaviour would exhibit
uncertainty aversion.

Corollary 1. Assume f and g as in Theoreinand suppose the individual is indifferent
between the acts f and g too. Théor everyg > 0 probability of a regular environmenshe
will prefer a lottery between the two adisr bundled acts—with probabilitg) over each acfor
bundled act—uwith probability).

Proof. Since(f,a;9,1—a)p > fp and(f,a; 9,1 —a) ~ f, it follows from the
independence axiom that

The corollary may be interpreted as a learning argument in the development of a rule. Since
the agent is indifferent between the two singular afctand (f, «; g, 1 — «), the bundled acts
foy and (f,a; 9,1 — a)(2) serve as “tie-breaking”. Hence if the agent develops one rule to
decide in similar environments (where the regular and the singular environments are considered
subjectively similar), this rule will chooséf, «; g, 1 — ).

3.3. Are the conditions necessary?

Theoreml shows that whenf and g are Statewise Ranked by FOSD then preferences over
bundled acts will exhibit uncertainty aversion. The following example shows that when this
condition is not satisfied, uncertainty aversion or uncertainty loving among bundled acts may
result (depending on the specific utility function). Hence, this condition alone is not necessary
for uncertainty aversion among bundled acts. It is left for future research to fully characterize
preferences on this domain.

Let the utility function be

u(x) = {X X=v (10)
Yy X>Y

for somey > 0. Assume two states of the workdt with equal subjective probability. The two
actsf, gare

3 05
2 05

4 05

1 05 D

f(s) =gt = { ft) =g(s) = {
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The two acts are non-comonotonic (the state lotteries are ranked by second order stochastic
dominance) for < y < 4 and the individual is indifferent between them. Therefore, uncertainty
aversion would claim that she prefers the mixture of the two over each act separately. However,
a short calculation shows that our explanation of preference over bundled acts may or may not
support uncertainty aversion in this case, depending on the paramelel < y < 2 the
individual is indifferent betweerf;) and(f, 0-5; g, 0-5)(2), while if 2 < y < 4 the individual
prefers the latter bundled act to the former (that is, exhibits uncertainty aversion).

A utility function that exhibits strict uncertainty loving for the above acts is given by

X x<3
ux)=1%2% 3<x<5 (12)
4 X > 5.

Here,U ( f(z)) > U (( f, 0.5; g, 0-5)(2)).

The intuition that motivates the above examples is that in the absence of Statewise Ranking
by FOSD, diminishing marginal utility of wealth does not impose enough restrictions on the
preference over bundled acts to imply ambiguity aversion.

4. DISCUSSION AND CONCLUSIONS

This work shows that a perturbation of the Ellsberg paradox’s environment leads to uncertainty
averse behaviour which is consistent with expected utility theory and Bayesian rationality. If
one uses “rule rationality”, then human behaviour may exhibit insensitivity to the details of the
environment, and uncertainty aversion becomes a very plausible prediction even in the standard
environment.

4.1. Comparison with the literature

The Ellsberg paradox motivated an extensive literature that tried to explain this predicted
behaviour. In this section we shall discuss only a few alternative resolutions.

The Maximin Expected Utility (MEU) model, which was axiomatized &jlboa and
Schmeidler(1989 and Casadesus-Masanell, Klibanoff and Ozdenof2®00, derives from
individual's preferences a convex set of priors. The decision maker chooses the act that
maximizes their expected utility if the worst prior, included in the set of priors, occurs (Maximin
over a convex set of priors). Note that the MEU model does not imply extreme pessimism, since
the set of priors itself is endogenously derived from preferences. Hence conservatism in the
Maximin framework is measured by the size of this set. For example, tH8,ddtcorresponds
to extreme pessimism, while smaller sets correspond to more moderate conseritisa.
(1987 and Schmeidler(1989 derived the Choquet expected utility representation, which is a
special case of the Maximin model if the capacity is convex. Uncertainty Aversion was first
defined in this context. We point out that the preferences over bundled acts suggested in this
paper, and the MEU model are two distinct representations, and are not equivalent. The following
thought experiment may sharpen the difference (beyond the example in the previous section):
Suppose a third urn containing 100 balls (red or black) is added to the original two urns in the
Ellsberg example. The composition of this urn is determined by a lottery that assigns probabilities
0 < 7j < 1 that the number of red balls js= 0, ..., 100 andy}%) 7j = 1. Furthermore,
assume that is symmetric, that iswr100-j = 7j. The subject is asked to bet on the colour of a
ball drawn, before she knows the result of the lotteryNote that urrll is completely objective
and is composed of lotteries with two stages. According to the MEU model, the decision maker
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should be indifferent between betting on the first urn (known 50-50 composition) and the third,
and as long as the set of priors is symmetric and non-singleton, a bet on either should be preferred
to a bet on the ambiguous (second) urn. This is a result of the “reduction of compound lotteries”
assumption, included in the expected utility treatment of objective uncertainty (risk) within the
MEU model. According to the theory of preferences over bundled acts proposed here, the subject
will rank the first urn highest (as long as the subjective and the objective priors are not a point
mass on a composition of 50-50), and then rank urrend Ill according to the dispersions

of g (the subjective prior on urhl) and = (the objective prior on urrll). For example, if

mo = w00 = 0-5, all risk averse individuals will weakly prefer the ambiguous urn over the
third urn. The above predictions may enable us to compare empirically between the theories.

As shown in the above thought experiment, the theory presented in this paper allows for an
aversion to known second order probabilities, through the bundling effect. This main feature of
our theory is present in UBegak (1987 work as well. He analyses ambiguous prospects as
lotteries with two stages (similar to the framework here): first a probability is chosen according
to some prior belief distribution, and then a second lottery is performed. Segal relaxes the
Reduction of Compound Lotteries Axiom, and replaces the one stage Mixture Independence
with Compound Independenc8dgal 1990. This allows him to consider utility functions that
are more general than expected utility. An ambiguous lottery is evaluated by replacing each
second stage lottery with its certainty equivalent. Segal shows that for Anticipated tility,
risk aversion and reasonable restrictions on the transformation of probabilities function may
rationalize the Ellsberg paradox. Hence, the two theories share the causation between risk
aversion and uncertainty aversion. However, these are different explanations: Segal's theory
relies on non-expected utility. Both the second and first stage lotteries are evaluated according
to a non-expected utility model. If the utility function were to be linear in probabilities, the
ambiguous lottery would give the same pay-off as its expected risky counterpart. Under the
theory presented here, the lottery at each state is replaced by the sum (convolution) of two
conditionally independent lotteries, which we call a regular act. Even if the convolution is
evaluated using the expected utility function (asSiection3), the convolution operator itself
makes the evaluation of the second stage non-linear in probabilities, and leads to the violation of
the reduction axiom. More specifically, the bundling effect causes the pay-off at the second stage
to be a quadratic function of the probabilities:

U(IR | p) = p*[u(200) — 2u(100) + u(0)] + 2p[u(100) — u(0)] +u(0).  (13)

Monotonicity and risk aversion imply that this is a concave functiompoSince the first stage
is evaluated using the expected utility (which is lineapjnthe concavity inp implies that the
decision maker will be averse to mean preserving spreags lihone calculates an expression
similar to (L3) for an arbitrary prize, thendU (IIR2) | p)/ax = 2p2U'(2x) 4 2p(1 — p)u’(X).
That is, the weight attached to the marginal utility at i higher than the weight that the
consequenceXreceives in calculatingl@). Furthermore, the second derivative &8) assigns
an even higher weight t0” (2x).

To compare these findings to Segal’s, note that the expression correspondiB)giidSegal
is

V(IR | p) = v(0) + [v(100 — v(O)] f (p) (14)

wherev(-) is the decision maker’s cardinal utility index, arfd-) is their decision weights
function satisfyingf (0) = 0 and f(1) = 1. It is easy to see that the curvature @i as
a function of the prize is determined by the curvaturevddt the prize. Unlike the bundling

9. Similar analysis could be done for other non-expected utility functions.
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model case, the first stage evaluation in Segal’'s model is not linear in probab8itigal(1987)
derived sufficient conditions of(-) that will generate Ellsberg type behaviour. Those conditions
are slightly stronger than risk aversion in the theory of anticipated utility, and are related to
conditions that can generate Allais type behaviour using this functional form.

The two theories $egal (1987 and the bundling theory presented here) have different
predictions for the thought experiment presented above (using a third urn). A decision maker
who follows Segal’s theory would be indifferent between the risky (first) urn and a third urn
with extreme dispersion ofy = 190 = 0-5. Another decision maker who has preferences over
bundled acts as this paper suggests, and is risk averse, will strictly prefer the first urn to the third
extreme urn, and will weakly prefer the ambiguous urn to the extreme urn. In an experiment
conducted byHalevy (2009 he found strong experimental support for both patterns of choices
in the populationYates and Zukowski1976 considered a similar third urn with a uniform
Thl%y found that, on average, subjects valuedlumore than urnll, and urnlll more than urn
Il.

Recently, Nau (2002, Ergin and Gul (2004 and Klibanoff, Marinacci and Mukerji
(2009 developedSegak (1987 approach, focusing on the violation of the reduction axiom
in explaining ambiguity aversion. Although the goals of the three papers are different, they
all assume that the decision maker has a prior belief as regards the possible realization of the
probability distribution, but since she does not reduce probabilities between this stage and the
second stage in which objective lotteries are performed, this allows the capture of her ambiguity
attitudesNau (2002 emphasizes that the utility could be state dependengin and Gul(2004
allow for probabilistically sophisticated preferences &titbanoff et al. (2004 concentrate on
expected utility valuation without imposing reduction.

It is of interest to study the degree of risk aversion implied by the proposed theory of
bundling. For simplicity, consider an arbitrary lottery (with no ambiguipy)Let c(p) be the
certainty equivalent op defined by the implicit relatiorp ~ 8¢(p) Wheredy is the degenerate
lottery that paysx with certainty. Now consider bundling two such lotteries, and compare the
certainty equivalent of the bundled lottery to the certainty equivalent of the original Idttery.

If u(-) is exponential—that is, exhibits constant absolute risk aversion, it can be shown that
the certainty equivalent of the bundled (compound) lottggy,, is exactly twice the certainty
equivalent ofp. That is, bundling does not change the risk attitudes of the decision maker.
However, if one allows for wealth effects, this will not be true any longer. That is, the risk
attitudes of the agent will be a function of how “big” the bundle that she evaluates is. This is
an important line of research, which we plan to pursue in the future, since it relates ambiguity
aversion (the current paper) to risk attitudes over a sequence of lotteaerI€lson1963.

Morris (1997 takes a strategic approach, and argues that the unattractiveness of the
ambiguous urn is a result of the asymmetry in information between the experimenter and the
subject. This approach may rationalize a lower willingness to bet on one colour from the
ambiguous urn, but when bets on both colours are offered (as in the original Ellsberg example) the
individual should behave non-strategically. Morris argues, along the lines of “rule rationality”,
that individuals utilize their experience from situations of asymmetric information in responding
to Ellsberg’s paradox.

10. Yates and Zukowski1976 averaged the minimum selling price of a chosen lottery, for different individuals.
Hence, their results involve interpersonal comparisons, and should be treated carefully.

11. This problem is closely related to Samuelson’s “Fallacy of Large Numb8esh(elson1963, which shows
that if an expected utility maximizer rejects a certain bet at all wealth levels, she should reject any sum of independent
repetitions of this bet. However, as pointed out by many autleogsRoss 1999, allowing for a wealth effect may lead
to the acceptance of the sum of bets. If, on the other hand, expected utility is reGhead,and Epsteifil988 have
shown that acceptance of the sum of bets may be consistent with Weighted Utility and Anticipated Utility.
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Note that the formal model presented in this paper is silent as to whether the risks are
bundled or repeated. In the latter case, the results could be interpreted as a “policy” of preferring
a sequence of risky bets to a sequence of ambiguousHiezen(1992 shows (similarly to the
example inSection2) that a risk averse policy maker who is an expected utility maximizer and
faces more than a single repetition of the Ellsberg problem will exhibit uncertainty aversion.
Schneeweisg1999 analyses the Ellsberg paradox assuming that the number of repetitions
approaches infinity and the utility function is quadrafi@oth works are limited to the Ellsberg
example, and do not explore how general the resdft Eurthermore, the “policy” interpretation
of the results is vulnerable to considerable limitations on the rules considered. For example,
the decision maker cannot learn from one repetition to the next (for the optimal strategy in this
case sedlller and Scarsinj2002), and cannot alternate (hedge) between different ambiguous
risks14 Hence, the decision maker is not rational even in the repeated environment.

Note that our notion of bounded rationality included in the “Rule Rationality” description is
distinct from the Case Based Decision Theory (CBDT) studie@itlyoa and Schmeidl€d995.

Their theory is aimed at describing situations where the state space is unknown to the decision
maker. A case in their theory is described by the triplet (problem, act, outcome). The decision
maker evaluates each act according to her average pay-off when this act was taken in “similar”
problems that she can recall, weighted by how similar the problems are. Clearly, the theory
presented here is not formally related to CBDT. Here, the decision maker knows the possible
states of the world, and uses this information extensively. However, the notion of “similarity”,
which is used inRubinstein(1988 as well, may be incorporated into the current model. The
decision maker views the singular and the regular environments as similar, and it leads her to
prefer risky acts over ambiguous acts in the singular environment as well.

4.2. Uncertainty aversion

Schmeidles (1989 definition of uncertainty aversion (Definitidk), which was used bgilboa

and Schmeidlef1989 as well, is nested within the Anscombe—Aumann framewsris€combe

and Aumann1963. This framework has some drawbacks due to its compound lottery structure.
Casadesus-Masanellal. (2000, who present an axiomatization of Maximin Expected Utility in

a completely subjective world without lotteries, provide an analogue to Schmeidler’'s definition
of uncertainty aversion—without objective lotteries.

Other definitions of uncertainty aversion, which differ from Schmeidler’s, have appeared
in the literature.Epstein (1999 defines uncertainty aversion relative to probabilistically
sophisticated preferences, whihirardato and Marinac¢R2002) define it relative to subjective
expected utility. A one stage axiomatization of expected utility, that allows for objective lotteries,
was suggested bgarin and Wakke(1997, but the definition of uncertainty aversion in their
original framework is not transparent and will be differeSafin and Wakker1992 from
Schmeidler's.Klibanoff et al. (2004 employ this framework while relaxing the Reduction
of Compound Lotteries axiom, to defirmnooth ambiguity aversioas an aversion to mean
preserving spreads in thex anteevaluation of an act (similar to risk aversion in objective
expected utility). The exact way in which the behaviour described in this paper relates to those
alternative definitions remains a subject for future work.

12. We thank Gordon Hazen and Hans Schneeweiss for bringing their works to our attention.
13. Both works assume expected utility (and even more restrictive functional forms), while, as sHeegtian
2, the only requirement is aversion to mean preserving spreads.
14. ltis easy to show that if the decision maker faces repeated draws (with replacement) from the two Ellsberg urns,
then even if she cannot learn (that is, has to have a “policy”), mixing between bets on the untgmam-(that is, choos-
ing a policy of (IIR, 1IB, lIR, 1IB, .. .)—second order stochastically dominates bets on the riskyrf. Hence, a risk
averse decision maker who faces a sequence of draws will prefer bets using the uncertain urn to bets using the risky urn.
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4.3. “Rule rationality” and other experimental anomalies

An underlying feature of the explanation presented here is that individuals treat a single draw
from an Ellsberg urn (an act) the same way that they treat multiple draws from the urn (a
bundled act). Many studies in psychology have focused on how individuals update their belief.
Although there is no updating of belief per se in this paper, we believe that there is a close
connection between the two phenomépalversky and Kahnemaxi1971) first noted that
people consistently overestimate the distributional similarity between a small sample and the
population, and named this behaviour “the law of small numbers”. This goes both ways—from
the sample to the population, and vice veBar-Hillel and Wagenaaf1991) concentrate on

“local representativeness” bias, when people expect even a short sequence of signals to have
the same proportions of signals as a much longer (or infinite) sequ&nether(1980 and
Camerer(1987) test whether individuals and markets are Bayesian and find support for bias in

a direction of “exact representativeness”, in which agents tend to believe that the (unknown)
population’s distribution is similar to the small sample’s distribution. These observations were
modelled and applied bRabin (2002 to a variety of economic scenarios. These behavioural
regularities may illuminate our current study and give our explanation an alternative motivation:

if we reinterpret the prior as representing a “population”, then the risky population (generated by
urn ') second order stochastically dominates the uncertain population (generatedIby Lirn

the decision maker exhibits “local representativeness” she expects these relative properties of the
distributions to be maintained even for a small sample (in our case of size one), and hence will
be uncertainty averse. We believe that the relation between the two phenomena requires further
experimental study.

As discussed in the Introduction, two other prominent experimental anomalies, that
initially seem unrelated to uncertainty aversion, are the one shot “Prisoners’ Dilemma” and
the “Ultimatum Game”. In the first example, almost all normative notions of equilibrium
(except when agents have unobserved utility from cooperation) predict that individuals will
not cooperate. Yet, in practice, many subjects do indeed cooperate. In the Ultimatum Game,
the normative backward induction argument predicts that the individual who makes the offer
will leave a minimal share to his opponent, and the latter will accept any positive offer. In
practice, most offers are “fair”, and most respondents reject “unfair” (albeit positive) splits.
Explanations for these phenomena vary, but the one explanation that we find most compelling
(and which may be viewed as a strategic foundation for other explanations) claims that people
do not “understand” that these are one shot games. Individuals play a strategy which is perfectly
reasonable (according to some equilibrium notion) for a repeated game. Thus, people are, in
some sense, not “programmed” for, and therefore find it hard to evaluate, singular situations.
Aumann (1997 contrasted thiSRule Rationality” with “Act Rationality”. Hoffman, McCabe
and Smith(1996 have suggested that in the Ultimatum Game, the rule to “reject anything less
than thirty per cent” may be rationalized as building up a reputation in an environment where
the interaction is repeated. This rule does not apply to the one shot Ultimatum Game because in
that situation the player does not build up a reputation. But since the rule has been unconsciously
chosen, it will not be consciously abandori&d.

The (speculative) relation between the decision theoretic problem studied in this paper
and other anomalies in game theory leads us to hypothesize that rule rationality is a form of
limited rationality that should be studied carefully. Specifically, experiments could determine
whether certain individuals rely more than others on behavioural rules. If rule rationality is

15. We thank the Editor James Dow for pointing out this relation.
16. It may be argued that “manners” have evolved in a similar way, and explain the Proposer behaviour in Dictator
Games as a result of expected “reciprocity”.
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found to be common, it may call for reconsidering the structure of experiments in economics
and psychology. Currently, most of the experimental literature identifies a singular environment
as a good experimental design, since it enables concentration on a specific issue. However, if
individuals use in this environment their experience from more “regular” environments, the
designer should consider whether the behaviour in the experiment is robust to small perturbations
of the environment.

APPENDIX
A. PRELIMINARIES

Let ¥ andt be countably additive and finite set-functions@nDefine
Fy(X) = Ztgx v() and  Fr(x) = Ztsx (t). (A1)

Assumeyr andt are such that
Fy (+00) = Fr (400). (A.2)

Assumption A.2) would hold true if, for exampleyr andt are probability measures (theA.R) is equal to one), and
when each is a difference of two probability measures (ti#e) (s equal to zero).

DefinitionAl. Lety andt be countably additive and finite set-functions&nand letF,, andF; be defined as
in (A.1) and satisfy A.2). The functiony First Order Stochastic Dominates (FOSBie functionz if for everyx € X,
Fy (X) < Fr(x) with strict inequality for at least ore.

Definition Al is a generalization of the standard definition of first order stochastic dominance, and it includes the
probability measure as a special case. It is well known that every decision maker with monotone preferences, choosing
between two distributions ordered by FOSD, will prefer the dominant one.

Assumel?

+00 +00
/ Fy ()dx = f E, (dx. (A3)

o0 o0
That is, the mean ofs is equal to the mean af. For example, ify is the difference of two probability measures and
7 = 0 then it implies that the two probability distributions from whighwas derived have the same expected value.

DefinitionA2. ¢ Second Order Stochastically Dominates (SOSD) A.3) holds and

X X
/ Fy (DHdt sf F:()dt Vxe X
o0 (o]

with strict inequality for at least one.

Claim Al. If ¢ SOSDr then
U®) = erx U Y (X)dx > erx u)T(X)dx = U (1)

for all strictly monotone and strictly concave u.

Proof. The proof is similar toRothschild and Stiglits (1970, using @.2) instead of assuming probability
measures, and\(3) instead of assuming equal expectations||

B. PROOF OF THEOREM 1
Let f andg be Statewise Ranked by FOSD, and

U(f2) =U(ge2)- )

17. Since all set-functions that we shall deal with have finite variation, all the integrals converge.
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Therefore, there exist at least two states in whichndg differ. Define, for evens € S,

h(s)(X) = af (5)(X) + (1 — a)g(s)(X). (B.1)
Then we need to show that
U(hg) > U(f2). (8.2)
Consider the functiofl defined as
0(s)(x) = f()(X) — g(s)(X) (B.3)

for everyx ands.
Let h(z) be the convolution (denoted by") of h with h at every stateU (h(y)) is the expected utility from this
convolution, averaged over all states:

Uthg) =Y q®UIh() *h()]

B af (s)(x) af(s)(y)
=249, 0, [+(1 - oz)g(S)(x):| [+(1 - a)g(S)(y)] HXE)

@2(F () (F ) Y))
uXx+y).

SPIXCODDIN [ +(1 - )2(9(8)())(I(S)(Y))
+20(1— o) (F(9(X))(@(S)(Y)

Let6o) be the convolution of with 6 at every state. We can view/(92)) as the “expected utility” from this convolution
(note that it is additive in the states):

UB) = ) aeUIo() %6(9)] (B.5)
=200 > 0900 MUX+Y)
=240, >0 O = g&MILF () = g (U +Y)
(SN (S)(y)
ux +y).

=240 > [ +(GE (X)) (GE) (V)

=2(f (39N @EE)(Y)

(B4)

(B.6)

By substitution of B.4) and @.6) and utilizing (7) it follows that
U(hp) —U(fg) = —al - a)U(62). (B.7)
Thus, B.2) holds if and only ifU (6(2)) < 0.

Claim B1. In every state in which f and g diffef (s) FOSDO (the zero function) or vice versa.

Proof. Sincef andg are Statewise Ranked by FOSD, then if they differ at statbey are ranked according to
FOSD. Assuméf (s) FOSDg(s). Then,

Fo(s)(X) = Ff(5)(X) — Fgg)(X) < 0.

The symmetric argument holds whgts) FOSD f (s). ||

LemmaB1. Let& be afunctionwhich is the difference of two probability mass measures and assumeahdt
0 are ranked according to first order stochastic dominance. Thean be written as a finite sum of functions

L
=) 6 (B.8)
where
pifx=g
§(X) =&g.b,pX)=1—-p ifx=D (B.9)
0 OTHERWISE

withg < by and|p/| < 1. If 0 FOSD¢ (¢ FOSDO) then all g can be chosen positiy@egative in the decomposition
(B.9).
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Proof. Recall that sincé¢ is a difference of probability mass measures, itis a finite set-functionfwith-oo) = 0.
Assume tha0 FOSDE, i.e. F: (x) > 0¥x € X with strict inequality for at least one. Then,

a1 = min{x | £(x) > 0}
exists. SinceFg (x) > 0, it follows that for allx < a, F¢ (x) = 0. ThereforeFs (a1) = £(ap). Similarly, there exists
b1 =min{x > a; | £(x) < 0}.

Define

p1 = min{&(aq), [§(bp)[} > 0.

Defineg; = & — ajbypy- It is still true thatllsl(x) >0, sincellél(-) differs from Fg (-) only in the intervallas, bq],
and thereFz > £(ag) > py. Note thatt ; is a set-function with at least one less mass point than

Hence if§1 # 0 then0 FOSD&1 and we can repeat the process, obtaining iteratii@lyés, .. ., & ). Because
eachg| has at least one less mass point thary, andz is finitely supportedi(e. there exist only finitely many points
such that (x) # 0), the sequence is finite. The sequence has to stop, at some.statieZ| = 0. Hencet = ZIL:l &,
with p > O for alll.

A similar proof holds for the case whegg=OSDO. ||

LemmaB2. If p;px > 0thenO (the zero functionSOSD¥| * & (the convolution of; and &), wheng and &
have the(B.9) structure.

Proof. The convolutiorg « & is given by

ppk ifx=a +ak
- if x=a +b
@&+ = | PP XA
—ppk ifx=Db +ax

PPk if x=b + by
Feag ) = /% o (& * &) (Ddtis equal to:

pcp if X € [a + ax, minfax + by, b 4 a}]
Feag (X) = 1 —pkp  if x e [max{ax + by, b + &}, bk + ]
0 OTHERWISE.

Therefore,

X
/ FEI g (t)dt > 0.
—00
That is, the zero function SOS * &. ||

Corollary B1. In every state in which f and g differ, the zero function S@E) * 0(s).

Proof. Sincef andg are Statewise Ranked by FOSD, by Cld#h the zero function FOSB(s) or vice versa.
By LemmaB1, we can decompose every difference of probability measures set-fud¢gpmto L (s) functions with
allp (I =1,...,L(s)) positive (if0 FOSD6(s)) or negative (ifo (s) FOSDO0). Therefore,

L(s) L(s) L(s) L(s)
0(s) * 6(s) = < g O (s)) * ( ket Gk(s)> =D ey 2y A % 0k(S). (B.10)
By LemmaB2 each convolution element of the above sum is second order stochastically dominated by the zero function.
Therefore, the zero function SOSD the sum of those convolution.

Proof of Theoreni. Recall from B.5) thatU (f)) is additive across states. By CorollaBi and ClaimA1:
U[o(s) x 6(s)] < 0 in every state in whictf andg differ. In states in whichf andg are equalg(s) = 0, and therefore
U[6(s) x 6(s)] = 0. It follows thatU (92)) < 0 and B.2) holds. ||
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