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1 Introduction

There is growing acceptance among researchers that the decision-making processes that

agents employ in interactive settings are heterogeneous and often diverge from the principles

of standard textbook game theory. Empirical identification of the decision processes adopted

by players requires the examination of observed choices in conjunction with richer data that

convey information about the way these decisions have been reached.

We develop a simple framework to study, within an experimental setting, the interactions

among agents utilizing heterogeneous decision procedures. To identify interactive decision-

making processes one needs to posit an environment in which agents’ beliefs about other

agents’ actions affect their pecuniary payoffs. The environment must allow for the elicitation

of these beliefs in a non-intrusive and credible manner. The setting should also enable agents

to learn about the environment and the motives and procedures of others. An environment

with these attributes and multiple equilibria is naturally suited to yield new insights into

coordination problems. Finally, fine-tuning the pecuniary incentives toward coordination

would enable the researcher to assess the strength of alternative behavioral motives.

This paper proposes an environment that satisfies the key requirements outlined above.

We study a joint investment problem where individual group members make private in-

vestment decisions, without communication, to generate income that is equally shared. In

this setting, an agent’s beliefs about others’ investments play a key role in determining her

own decision, due to complementarity among individual investments. Finding the optimal

investment is facilitated by the use of a calculator, whose inputs—recorded by the experi-

menter—provide valuable and reliable information about each subject’s thought process and

her conjectures about other players’ investments. We choose not to elicit beliefs explicitly,

but we do collect data on the inputs subjects enter in the payoff calculator. These inputs

include conjectures about other group members’ investments. In Section 5 we describe these

data extensively. Collecting process data is easy and common among social scientists in gen-

eral and experimental economists in particular. However, the type of data we collect—which

is among the easiest and least intrusive to track—has rarely been analyzed systematically

by behavioral economists.1 Meanwhile, online retailers—such as Amazon—advertising plat-

forms—such as Google—and social networks—such as Facebook—routinely track both user

choices (e.g., purchases, likes, shares) and processes (e.g., search and browsing history) before

quoting a price or presenting an advertisement. A key objective of this study is to demon-

1One exception is Cherry, Salant, and Uler (2015) who use a combination of choice and process data to
analyze the behavior of participants in an output-sharing game with negative externalities to effort. Their
analysis includes the last conjecture subjects enter before submitting a choice and then compares it to actual
decisions. Their work is thoroughly discussed in Section 7.
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strate how systematic analysis of such data can inform our understanding of individuals’

motives, beliefs, and reasoning.

Although players in the joint investment problem choose from a continuous strategy space,

the game—with selfish players—possesses upmost two equilibria, located at the endpoints of

the strategy space. This feature allows us to examine coordination and equilibrium selection.

Moreover, varying a single parameter—complementarity—alters the potential gains from

coordination, enabling researchers to quantify the monetary cost of pursuing non-pecuniary

motives.

At low levels of complementarity, the unique Nash equilibrium—under the assumption of

selfish agents—is a zero-investment equilibrium. When complementarity is sufficiently high,

a second full-investment equilibrium emerges, transforming the selection of equilibrium into

a coordination problem.

Our experimental design varies the degree of complementarity and encompasses, as a

special case, the well-studied linear public goods game. Subjects visibly respond to the in-

troduction of complementarity. When complementarity is sizable but insufficient to support

a second selfish-equilibrium, subjects persistently invest above zero and we observe little

or no convergence toward the unique selfish-equilibrium—a pattern consistent with altruis-

tic or “joy of giving” motives. Under strong complementarity, subjects move closer to the

high-investment, Pareto-efficient equilibrium but fail to reach it—despite monetary incen-

tives and potential altruistic motives pushing in that direction. This suggests that another

motive—competitiveness, or the “joy of winning”—may be at play.

Complementarity between investments is typical of many realistic scenarios of public

goods provision, especially when individual investments entail costly effort. Yet this aspect

has received limited attention in the literature, which has primarily emphasized the tradeoff

between individual (selfish-) rationality and social efficiency. Moreover, complementarity

introduces a coordination dimension often essential for efficient provision. Through this

feature of the environment, we contribute to the broader study of coordination in games.

We document how individuals form beliefs about other agents’ choices, make choices given

these beliefs, and how coordination is affected by non-pecuniary motives of some subjects.

Section 7 contains further discussion, which also describes the related literature in greater

detail.

Combining choice and process data allows us to examine multiple dimensions of subjects’

interactive decision-making. Are subjects’ conjectures influenced by past experience? Does

the intensity of calculator usage vary with the complexity of the environment? Do subjects

use history-dependent best-response strategies, and do they adjust their behavior over time?

How do subjects experiment with hypothetical investments? And, given their conjectures,
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are they able to identify the profit-maximizing strategy? Can we classify subjects according

to the processes they adopt to make choices? Finally, how does heterogeneity in decision

processes relate to variation in response times?

To answer these questions, we rely on rich process data, including accurate information

about calculations made by each subject prior to submitting a choice, as well as the time

taken to do so. We document several empirical patterns regarding how subjects form conjec-

tures about others’ investments, whether they identify profit-maximizing responses to those

conjectures, and how their calculations relate to final choices.

One objective of our work is to develop a methodological approach for characterizing the

joint distribution of choice and process data, imposing minimal restrictions on their depen-

dence structure and on subjects’ motives and calculations. By relating the entire distribu-

tions of choices and conjectures, we show that researchers can draw meaningful inferences

about the mechanics of decision-making.

Our methodological focus on aggregate distributions allows us to distinguish between

coherent and incoherent beliefs. This is an essential step before drawing conclusions about

non-pecuniary motives. To implement this preliminary step—and in contrast to previous

work—we collect data on the distribution of multiple hypothetical investments and conjec-

tures formed by subjects. These data are recorded without imposing restrictions on calculator

usage, the space of possible investments, or the associated payoffs.

As a result, we obtain an unusually rich set of choice-process records, covering multiple

rounds and linking each subject’s hypothetical and actual choices to both current and past

conjectures about others’ actions.

We show that one can break down departures from money-maximizing strategies into

two components: deviations due to confusion and non-pecuniary motives. In Section 5.4,

we illustrate how these components can be identified using repeated snapshots of the cross-

sectional distribution of conjectures, as well as hypothetical and actual choices.

The methodology we develop is flexible in that it does not attribute deviations ex-ante to

specific motives. In this respect, not only can we measure the magnitude of non-pecuniary

motives, but we also identify their scale by varying complementarity in the experimental

setting—without imposing strong assumptions about agents’ preferences.

Our analysis of choice and process data suggests that the rich heterogeneity in observed

investments can be reduced to two modus operandi, which we associate with two different

types of agents: Homo pecuniarius and Homo behavioralis. Homo pecuniarius are able to

approximately compute profit-maximizing actions based on beliefs formed from recent his-

tory. Homo behavioralis, by contrast, can identify similar profit-maximizing actions but

systematically choose to deviate from them. We do not find strong evidence of confusion:
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both types hold coherent beliefs that align with the aggregate distribution of strategies in

the population. Moreover, Homo behavioralis subjects appear willing to forgo pecuniary

rewards in pursuit of alternative objectives. When complementarity is low, they seem to act

on altruistic motives, investing above their pecuniary best response. When complementarity

is high, altruistic behavior becomes observationally equivalent to profit maximization. How-

ever, a new competitive motive emerges: by investing less than the pecuniary best response,

some subjects secure relatively higher monetary profits compared to other participants.2

This competitive motive was originally proposed by Fershtman, Gneezy, and List (2012),

and this paper provides the first experimental demonstration of how it can hinder efficiency

even when selfish preferences are aligned with efficient outcomes. Unlike previous field data

that relied on ethnic rivalry to explain costly deviations from efficient coordination (Hjort,

2014), our subjects are mostly homogeneous and anonymous. This competitive motive is

related to the dominance-seeking behavior studied by Imas and Madarász (2023). In our

setup, however, a player’s utility increases if she earns more than other group members, even

when exclusion is not possible. Moreover, we quantify the magnitude of these behavioral

motives and show that, while relatively modest, they can lead to systematic deviations from

the pecuniary best response and result in novel aggregate outcomes.

The two types of agents coexist and respond to one another in equilibrium. This is im-

plied by the fact that their beliefs are coherent, in the sense that they are consistent with

the empirical distribution of investments. Homo pecuniarius pursue approximate monetary

best responses based on their coherent beliefs. Homo behavioralis can similarly compute

approximate pecuniary best responses given their beliefs, but choose investment levels that

reflect non-pecuniary motives. The dynamic interaction between these types shapes aggre-

gate outcomes and offers a framework for interpreting observed choices under varying degrees

of complementarity.

The experimental methodology we propose—combined with exogenous variation in the

degree of complementarity—offers a transparent framework for studying heterogeneity in

response times and its relationship to altruistic and competitive motives. We show that

decision time depends on the complexity of the environment, the subject’s type (as defined

above), and the intensity of complementarity. This implies that analyzing response times

without sufficient variation in the environment may yield only a partial view of heterogeneity

in the decision-making process.

Although our primary focus is on the interactive decision-making processes of (potentially

heterogeneous) agents, our work also intersects with three broader areas of research. First,

our analysis of rich data on agents’ decision-making activities naturally relates to a small

2In the low-complementarity treatment, competition is indistinguishable from profit-maximizing behavior.
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but rapidly growing literature that uses non-choice data to study how individuals process

information to reach decisions. Second, our experimental setting posits a risky investment

problem which includes the linear voluntary contribution mechanism (LVCM) studied in

the extensive literature on public goods games as a special case. Finally, the presence of

multiple equilibria in some of our experimental treatments raises coordination concerns that

are typically explored in the equilibrium selection literature, particularly through order-

statistic and stag-hunt games. We discuss how our work relates to these important areas of

research in Section 7.

The paper is organized as follows. Section 2 presents the model and derives predic-

tions under selfish equilibrium behavior. Section 3 describes the experimental design and

laboratory procedures. In Section 4 we report aggregate results and show how investment

behavior varies with the degree of complementarity in the environment. Section 5 analyzes

individual-specific behaviors. The joint use of choice and process data is instrumental in

explaining deviations from profit-maximizing strategies and in classifying subjects into be-

havioral types. We also estimate the magnitude of altruistic and competitive motives in this

section. Section 6 provides an extensive analysis of response times, processing speed, and

the intensity of calculator usage across subjects. Section 8 summarizes the main findings

and concludes.

2 The Joint Investment Problem

Consider a set of n individuals indexed by i ∈ {1, ..., n}, each endowed with ω > 0, who

must decide whether—and how much—to invest in a joint account that transforms private

investments into income that is equally shared among all group members. Let gi denote

individual i’s investment. The remainder of the endowment (ω − gi) is kept in a private

account of player i. Individual investments are aggregated in the joint account through a

constant elasticity of substitution production function that exhibits constant returns to scale.

Player i’s preferences are additively separable between the private and joint accounts:

πi = ω − gi + β

(
n∑

i=1

gρi

)1/ρ

, (1)

where ρ ≤ 1 denotes the degree of complementarity and β > 0 is a constant. This joint in-

vestment problem encompasses as a special case (when ρ = 1) the standard Linear Voluntary

Contribution Mechanism (LVCM). The individual’s return from investing depends on the

investments of all n players and on the degree of complementarity. The marginal per capita
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return (MPCR) on investments is β (
∑n

i=1 g
ρ
i )

1−ρ
ρ gρ−1

i , and it reduces to the customary β in

the linear case.

Equilibrium

The best response (BR) of agent i, denoted as g∗i (g−i) is

g∗i (g−i) =

kMρ(g−i) if kMρ(g−i) ≤ ω,

ω otherwise
(2)

The best response is a linear function of the generalized ρ-mean (Mρ) of their conjecture

about the investments of other group members,3 denoted by the vector g−i ∈ ℜn−1
+ . Here,

k ≡
(

n−1

β
ρ

ρ−1−1

) 1
ρ

is a constant that depends on the model’s parameters. Details on the

derivation of the best response can be found in Appendix A. If k > 0, the investments

are complementary; moreover, as the degree of complementarity diminishes (ρ increases), k

decreases as well. In the limit, when ρ approaches 1, k goes to zero, and the best-response

of player i is to invest zero in the joint account regardless of other players’ investments.

Because agent i’s best-response depends on the generalized mean of g−i, it also depends on

the dispersion of other players’ investments: for a given arithmetic mean, player i’s optimal

investment decreases as the dispersion of other players’ investments increases. Put simply,

there is an additional benefit from coordination. Figure 1 summarizes the monetary best-

response g∗i (g−i) for different values of the complementarity parameter ρ (each used in the

experiments that follow).

Imposing the symmetry condition gi +
∑

j ̸=i gj = ngi in Equation (2) and solving for gi,

we characterize the symmetric equilibria:

geqi =

0 if k < 1

{0, ω} if k > 1.
(3)

Thus, for given β and n and with sufficiently high complementarity, there exist two equilibria.

It is straightforward to verify that only symmetric equilibria in pure strategies exist (see Ap-

pendix A.1).4 It is worth noting that when there are two equilibria, only the full-investment

3The generalized ρ-mean of g−i is Mρ(g−i) ≡
(∑n−1

i=1 gρ
−i

n−1

)1/ρ

. The arithmetic mean is a special case of the

generalized mean when ρ = 1. The arithmetic and the generalized means are identical when all investments
are equal, that is when g−i = g1n−1.

4Alternatively, k ⪌ 1 if and only if ρ ⪋ ln(n)

ln(n
β )

.
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equilibrium is stable.

Mρ(g−i)

ρ = 0:54 ρ = 0:58

LVCM (ρ = 1)
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Figure 1. Monetary best-response functions. In this figure the x-axis shows the generalized mean of others’ investments;
the y-axis displays player i’s monetary best-response investment. The figure shows the best-response as a function of others’
investments, g∗i (g−i). The solid lines represent g∗i (g−i) of player i.

3 Experimental Design

The baseline parameters are chosen so that the linear treatment (ρ = 1) is easily comparable

to similarly parameterized LVCM experiments (see, among others, Fehr and Gächter, 2000;

Kosfeld et al., 2009; and Fischbacher and Gächter, 2010). Specifically, the group size is

n = 4, with an initial token endowment of ω = 20 and β = 0.4. The latter value, β = 0.4,

is commonly assumed for the MPCR in linear scenarios. In the nonlinear case, however,

the MPCR additionally depends on the curvature parameter ρ and on investments of other

players.

Given the above parameters, the threshold value of ρ that generates an additional full-

investment equilibrium is approximately 0.602. Our treatments involve variations in the

degree of complementarity, denoted by ρ. Table 1 presents an overview of the experimental

design. Treatments are classified as LC (low-complementarity) if ρ is 0.65 or 0.70, which are

above the threshold and support a unique equilibrium of 0 investment. If ρ equals 0.54 or

0.58, which are below the threshold and support the additional full-investment equilibrium,

the treatments are classified as HC (high-complementarity).
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Table 1
Experimental Treatments

Treatment
ρ

Number of Equilibrium
Group Sessions Investment
LVCM 1 2 {0}

LC
0.70 2 {0}
0.65 2 {0}

HC
0.58 2 {0,20}
0.54 3 {0,20}

3.1 Experimental Procedures

For each experimental session, we recruited 16 subjects with no prior experience in any treat-

ment of our experiment. Subjects were recruited from the broad undergraduate population

of the University of British Columbia using the online recruitment system ORSEE (Greiner,

2015). The subject pool includes students from a wide range of academic majors.

All sessions were computerized using the software z-Tree (Fischbacher, 2007). Upon ar-

riving at the lab, subjects were provided with a set of instructions (see Appendix L). After

reading the instructions, subjects were required to respond to a series of incentivized control

questions.5 The experiment started once all participants answered all control questions cor-

rectly. At the beginning of each round of the experiment, subjects were matched with three

other participants. They then played the static game described in Section 2. This process

was repeated 20 times. To mitigate reputation effects, we employed a strong version of the

stranger matching protocol. The composition of groups was predetermined and remained

undisclosed to the participants. We pre-selected the groups to ensure that each pair of sub-

jects interacted only four times, with the other two participants varying each time. This

meant that any given grouping of four players never occurred more than once. At the end

of the experiment, subjects were paid the payoff they obtained in a single randomly selected

round.

The sessions were conducted at the Experimental Lab of the Vancouver School of Eco-

nomics (ELVSE) at the University of British Columbia, in January 2015 and March 2017.

Each experimental session lasted 90 minutes. Participants received compensation in Cana-

dian dollars (CAD). On average, participants earned CAD 30.60. This amount includes a

5The goal was to facilitate subjects’ familiarity with the main features of the framework. Relevant features
include (a) decreasing marginal productivity in the group account given a fixed level of others’ investments,
(b) efficiency gains due to coordination, and (c) absence of a dominant strategy (for treatments in which
ρ < 1). Subjects were credited $0.20, $0.15 or $0.10 for each question answered correctly in the first, second
and third attempt, respectively. There were 19 control questions, which can be found in Appendix K.
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CAD 5 show-up fee and the earnings from answering the control questions.6

3.2 Calculator and Decision Interface

We provide a calculator interface to aid subjects in their decision-making process, due to

the complexity involved in calculating potential earnings with a nonlinear payoff function.

A screenshot of the calculator and decision screen interface appears in the top part of Figure

2.

The calculator interface enables subjects to enter various combinations of their own hy-

pothetical choices and conjectures about other group members’ investments. This feature

allows participants to visualize the potential payoffs associated with each combination. By

clicking the “Calculate” button, participants can view their projected payoff based on their

own hypothetical investment and conjectures about others’. Additionally, the interface offers

participants an overview of their total income, including a breakdown between their private

and group account incomes.

Participants can infer the projected income of other group members from the combina-

tions they input, given that group income is equally shared among all members. Variations

in total income arise from heterogeneity in private account income, which is the residual not

invested in the group account.

We record subjects’ inputs, which may include multiple combinations within a single

round. Each round allows subjects 95 seconds to submit their chosen investment on the

right-hand side of their screen.7 At the end of each round, subjects receive feedback on their

own earnings as well as the investment choices of other group members. Figure J.15 displays

a screenshot of the feedback provided to the subjects at the end of each round.

The bottom part of Figure 2 demonstrates how non-choice data are collected. In this

example, subject i is randomly assigned to an LC treatment (with ρ = 0.65) and is assumed to

be in period 5. Before entering their actual investment decision (gi = 5), the subject utilizes

the calculator interface. Initially, they test a hypothetical investment denoted by ĝ1of 15

and a conjecture that other players will invest (ĝ2, ĝ3, ĝ4) = (15, 15, 15). Subsequently, the

subject adjusts her hypothetical investment to 4 and her conjecture about the other players’

investments to (ĝ2, ĝ3, ĝ4) = (20, 0, 10). Finally, the subject maintains her second conjecture

6The exchange rate used in each treatment was adjusted so that expected payoffs in the Pareto efficient
allocation were similar across treatments. The exchange rate (dollars per tokens) was set to: 1 for ρ = 1; 0.5
for ρ = 0.65 and ρ = 0.70; 0.4 for ρ = 0.58; and 0.33 for ρ = 0.54. The profits, and elasticities of the profit
function with respect to own and others’ investment, are discussed in Appendix B.

7For most subjects, this time constraint was not binding. To ensure timely submission of decisions, a
warning message appeared 10 seconds before the deadline. In these final seconds, the payoff calculator was
disabled.
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while increasing her hypothetical investment (ĝ1) to 6.

Based on these calculations, we are able to record three entries, each consisting of four

coordinates: (ĝ1, ĝ2, ĝ3, ĝ4). The first coordinate, ĝ1, denotes the subject’s hypothetical in-

vestment, while the other coordinates denote conjectures about other players’ investments

in the joint account. Gathering this comprehensive dataset for each participant poses chal-

lenges, including managing multiple conjectures and hypothetical investments, as well as

differentiating actual conjectures from exploratory attempts within the payoff space. Sec-

tion 5 addresses these challenges by detailing our methods for filtering and processing the

collected data. We deliberately avoid directly eliciting beliefs about others’ investments,

keeping subjects unaware that such data are being collected, as it could potentially interfere

with their decision process. Specifically, we are concerned that this “observer” effect might

influence how participants use the calculator, complicating the experiment and eliciting less

natural responses. It is important to emphasize that in our study, implementing incentivized

elicitation would needlessly complicate the experiment and might confuse participants. This

is because eliciting only the average conjecture is insufficient, as the dispersion of conjectures

plays a crucial role in understanding participants’ strategies. Additionally, incentivizing par-

ticipants to report their confidence in their own beliefs presents further challenges.
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20191817161514131211109876543210
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20191817161514131211109876543210
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Figure 2. The calculator interface (top) and the corresponding data collected (bottom) for the numerical example in Section
3.2. Subjects were shown only the calculator interface.
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4 Average Investment by Treatment

This section examines how changes in the degree of complementarity are reflected in the

level and evolution of aggregate investment. Manipulating the degree of complementarity

induces stark changes in subjects’ behavior.8

The five treatments are classified into three groups, as discussed in Table 1. In the

LVCM (no complementarity), investing 0 is a dominant strategy for any combination of

others’ investment. In the Low Complementarity (LC) treatments, the unique NE is to invest

zero. Still, the best response to any strictly positive combination of others’ investments is

a strictly positive investment. So the difference between the two levels of complementarity

reflects the marginal incentive to lower the investment level in the group account, but not the

equilibrium. In the High Complementarity (HC) treatments, there are two Nash equilibria

– a full-investment one (with full basin of attraction) and another of zero investment (which

is non-stable). Here, too, the difference between the two levels of complementarity is the

marginal incentive to increase the investment level in the group account. We, therefore,

expect the main differences between ρ levels within a group to affect the rate of convergence

to equilibrium, but not the equilibrium qualitatively.

Each solid line in Figure 3 represents the evolution of the average investment over the 20

rounds of each specific treatment.9 The 95% confidence intervals for LVCM, LC, and HC,

are shown in the shaded areas. To account for the possibility that individual investments are

correlated across rounds, and that investment levels within a session are interdependent, we

cluster the error term at the individual and session level so that the estimated standard errors

are robust. Details are available in Appendix D. Figure 3 clearly shows that average invest-

ment increases with complementarity. With the exception of the LVCM treatment (ρ = 1),

in which average investment converges towards the zero-investment selfish-equilibrium, there

is no evidence of convergence to the selfish-equilibrium for the LC (low complementarity)

treatments. Analogously, there is no convergence to the full-investment selfish-equilibrium

in the HC (high complementarity) treatments. It is notable that the average investments in

the last five rounds of all treatments are quite stable, which facilitates subjects’ ability to

rationally anticipate the average investment by other participants.

The difference in investments across treatments is substantial, even in the first round

when subjects have yet to receive any feedback from other players. Early rounds differ-

ences can be partially accounted for by the training subjects received before deciding on

investments: their understanding of the rules of the game is reflected in their initial choices.

8We concentrate here on average investment. The dispersion of investments is analyzed in Appendix C.
9In Appendix G we present plots of the complete sequence of investments made by every subject.
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Figure 3. Average investment over rounds.

5 How Do Players Choose Their Investments?

The analysis so far highlights that, while there is no visible convergence to the selfish equi-

librium in the LC and HC treatments—due to some subjects persistently deviating from

their money-maximizing strategies by over-investing in LC and under-investing in HC—the

linear environment exhibits steadily declining investments that approach the unique zero-

investment selfish equilibrium.

In what follows, we combine choice and non-choice data to document several key aspects

of the decision-making process. In particular, we examine the extent of history dependence

in subjects’ behavior and show that investments made by group members with whom they

were previously matched systematically influence each subject’s current choices. This form

of history dependence enables us to define a notion of best response to past investments

and to assess the extent to which observed choices can be rationalized as profit-maximizing

behavior.
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5.1 History Dependence in Subjects’ Beliefs and Pecuinary Best

Responses

To systematically analyze subjects’ behavior, it is crucial to understand how they form con-

jectures and the information they consider when making decisions. Once this is established,

we can calculate the optimal response given these conjectures, as in standard game theory.

This allows for straightforward calculation of deviations from the optimal response. Our ex-

perimental design allows us to achieve this objective. We collect data on all the information

subjects encounter during the game, including the past investments of group members they

were previously matched with, as well as their conjectures about others’ investments. This

allows us to assess whether subjects’ conjectures are influenced by the investment behavior

of group members they were previously matched with.

Appendix F, presents evidence of significant history dependence in subjects’ beliefs, offer-

ing empirical support for analyzing history-dependent best responses. We assess the influence

of lagged investments by previously matched group members on individual conjectures to

determine the extent of subjects’ memory span. Specifically, we consider all conjectures

made by subjects regarding the investments of the three other subjects (ĝ2, ĝ3, ĝ4) starting

from period 2. The process of collecting this data is described in subsection 3.2.

To formally establish a relationship, we employ a regression model in Appendix F, where

the dependent variable consists of all individual conjectures from round 2 onward, and the

regressors are the actual investments made by previously matched group members in the

previous rounds. Our findings show that conditioning on investments from the previous two

rounds accounts for approximately 47% of the variation in conjectures. Additional lags do

not exhibit significant effects. Therefore, we conclude that subjects’ conjectures are formed

based on the information from both the previous round and the round before that.10

Measurement of deviations. Having established that information from the previous two

rounds significantly influences the formation of subjects’ current beliefs and consequently

their investments, we can define a best-response measure. Requiring subjects to respond to

a specific triplet of investments in a given round could be excessively restrictive, as they are

aware they will not be matched with the same individuals in subsequent rounds. Therefore,

we examine whether a subject’s investment in period t can be rationalized based on a broader

10About 16% of conjectures coincide exactly with investments by other group members in previous rounds.
In 30% (36%) of cases, the conjecture matches exactly with one of the 10 (56) possible combinations that can
be formed from investments of subjects who were matched with the player in the previous (two) round(s).
These frequencies are extremely high when compared to the three most common individual conjectures,
namely (10, 10, 10), (0, 0, 0) and (20, 20, 20), which were considered in only 3%, 4%, and 5% of cases, respec-
tively. This lends further support that subjects make conjectures based on recent experiences.
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notion of recent history. We posit that subjects may respond to any possible combination

of investments by previously matched players’ investments in rounds (t− 1) and (t− 2).

It is worth noting that there are a total of 56 different combinations of investments

when considering the two previous rounds. For each possible combination of investments

and each subject-round pair, we compute the difference between the monetary profit from

the best-response (πBR
i,t ) and that from the actual choice (πACT

i,t ). Among all the differences

computed for a subject-round pair, we keep only the smallest difference and denote it as

MinLossi,t = min
{
πBR
i,t − πACT

i,t

}
.11 The objective is to rationalize the actual investment as

a monetary best-response to a combination of investments by players matched with subject

i in the past two rounds. If the investment can be rationalized, the lowest loss (that is,

the MinLoss measure defined above) is zero. If rationalization is not possible, the loss

provides a monetary metric for the discrepancy relative to optimal pecuniary response. To

quantify the consistency of actual investments with pecuniary-profit-seeking behavior, we

define the Pecuniary Loss Index (PLI) as
Min Lossi,t

πBR
i,t

. This provides a money-metric index

that quantifies the alignment of actual investments with pecuniary-profit-seeking behavior.

Finally, we compute the average PLI (MeanPLI) of each subject over the course of 19 rounds.

5.2 The Typology of Subjects

There exist large differences in the behavior of subjects within each treatment. Some invest

consistently more than others; many change their choices repeatedly, while others do not.

As we document in Section 6 below, there is substantial heterogeneity in the intensity of

calculator usage. This suggests that agents may not employ the same decision process when

choosing a particular investment or making choices more generally. To facilitate the analysis,

we classify subjects into two broad groups, or types, based on the discrepancy between the

payoff associated with the history-dependent best response and the payoff from the actual

investment. A larger discrepancy indicates larger foregone earnings. We then examine

whether there are differences in the calculator usage of different subject types.

To classify subjects into different types based on their MeanPLI, we employ a cluster-

ing method developed by Ward (1963). The objective of this method is to minimize the

within-cluster variance. In our analysis, we apply this clustering method separately to each

treatment group: LVCM (ρ = 1), LC (ρ ∈ {0.65, 0.70}), and HC (ρ ∈ {0.54, 0.58}).
The goal is to categorize subjects into two distinct subgroups within each treatment

group.12 For subgroup classification, subjects are assigned to Type 1 if their MeanPLI

11We sort the πBR
i,t values from the highest to the lowest. We then remove the two lowest and highest

values. This reduces potential bias due to outlying previous investments.
12As a robustness exercise, we explore the possibility of classifying subjects into three types instead of two.
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falls below an endogenously determined cutoff; otherwise, they are classified as Type 2.

Table 2 reports the distribution of types across different levels of complementarity.13 It is

important to emphasize once again that this classification criterion requires the joint use

of both choice and non-choice data. This is because calculating a subject’s pecuniary best

response depends critically on how their beliefs are formed. Accordingly, the classification

procedure incorporates both observed investment choices and—indirectly—the underlying

beliefs.

Table 2
Distribution of Types

Type
Treatment Group

Total
LVCM LC HC

1 17 39 54 114
2 15 25 24 60

Total 32 64 78 174

5.3 Analysis of Non-Choice Data: Methodological Issues

In the sections that follow, we provide an overview of the aggregate behavior exhibited

by the different subject types. Before proceeding with the analysis, we first address some

methodological and practical challenges associated with collecting and analyzing non-choice

data from the payoff calculator.

First, some subjects generate multiple conjectures and hypothetical choices within a

single round. To address this, a systematic procedure is required to measure each subject’s

beliefs in a given round accurately. Second, subjects may engage in exploratory behavior or

attempt to infer the underlying payoff structure while interacting with the calculator. It is

therefore essential to distinguish between entries that reflect learning and exploration, and

entries reflecting subjects’ actual beliefs—and tradeoffs.

To address these challenges, we employ four strategies. First, our analysis focuses on in-

vestments and conjectures from experienced participants, particularly in the last five rounds

(rounds 16-20). In earlier rounds, participants lacked experience with the environment, and

their beliefs about others’ investments were ambiguous. As the game progressed, however,

subjects’ beliefs became increasingly informed by the observed investments of other partici-

pants. Accordingly, we expect beliefs in later rounds to align more closely with the empirical

This results in 11 percent of the subjects classified as Type 3, with no gain in terms of explained variation.
For simplicity, we restrict the number of types to two.

13In the HC treatments, we exclude two subjects whose MeanPLI was found to be significantly higher
than the average of subjects classified as Type 2.
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distribution of investments. Second, to ensure a balanced representation of conjectures across

participants, each subject who uses the calculator is assigned an equal weight. This approach

guarantees that all participants (who use the calculator) contribute equally to the aggregate

distribution of conjectures. However, we adjust the weighting of individual conjectures based

on the frequency of calculator usage: conjectures are inversely weighted relative to how often

each participant uses the calculator. This method mitigates the disproportionate influence

of participants who engage heavily in exploratory usage, preventing their conjectures from

disproportionately shaping the aggregate distribution of conjectures. Third, to address the

issue of multiple hypothetical choices by the same participant, we keep only hypothetical

investments that are closest to the pecuniary best response given their conjectures. We use

observations from all rounds to account for learning. Finally, if the distribution of conjec-

tures in rounds 16-20 approximates the aggregate distribution of investments, we substitute

investments for conjectures at the individual level, and search for the hypothetical investment

that will maximize pecuniary payoff once the subject enters approximately these investments

as conjectures in the calculator (in any round up to the current).

5.4 Coherence of Conjectures

To assess whether calculator usage by subjects can serve as a reliable tool to measure their

beliefs, we inspect if their conjectures are coherent. Beliefs are coherent when they coin-

cide with the empirical distribution of investments. In other words, agents hold rational

(and, on average, correct) expectations. Holding coherent beliefs is necessary for equilibrium

play (Aumann and Brandenburger, 1995), independently of the payoff specification (whether

monetary or more general). In our context, it implies that subjects’ beliefs about the invest-

ments of other participants (whether their own type or the other type) are approximately

correct. To examine the hypothesis of coherent beliefs, we compare the aggregate distribu-

tions of investments to the distributions of conjectures of Type 1 and Type 2 subjects in

each treatment. Figure 3 lends further support to the assumption of a stationary aggregate

distribution of investments during the last five rounds. In Appendix H.1 we report the evo-

lution of average conjectures from practice and early to later rounds. In Appendix H.2 we

also document that there is no between-type selection into calculator usage.14

Figure 4 shows that, for both types and treatments, the cross-sectional distributions

14Table H.6 shows that, in LC treatments, 64% of subjects activate the calculator during rounds 16-20
whereas, in HC, 36% of subjects activate it during the last 5 rounds. As we show below, HC is an easier
strategic environment than LC, so this is not surprising. The absence of systematic selection is substantiated
by the observation that calculator usage does not vary with type. In LC, 61% of subjects are of Type 1 and
59% of those who activate the calculator are of Type 1; in HC the unconditional share of Type 1 subjects is
69%, while conditional on activating the calculator their share is 71%.
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Figure 4. CDF of Conjectures and Investments (Rounds 16-20)

of conjectures closely track those of investments. It is important to emphasize that this

finding is not mechanical, as there is nothing in the experimental design that might induce

investments and conjectures to be distributed so similarly. Sampling from the distributions

of investments and conjectures confirms that conjectures of both types are coherent with

the aggregate empirical distribution of investments (see Appendix I.3.1). We do not plot

the LVCM treatment because this is the only environment in which conjectures are never

relevant for the monetary-payoff (it is a dominant strategy to invest 0 in the joint account).

Moreover, most Type 1 subjects use the calculator only in the earlier rounds of the LVCM,

as they appear to rapidly figure out the monetary-optimal investment level.

5.5 Linking Types to Behavior

Having established that subjects’ beliefs are coherent, we turn to investigate what leads

Type 2 subjects to deviate from profit-maximizing investments. We consider the hypothesis

that over-investment in LC treatments may reflect motives beyond simple profit-seeking. For
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example, some agents may find joy in the act of investing in the group account, possibly

because it increases other subjects’ payoff. Such joy of giving would be harder to identify

when complementarity is high and profit-seeking behavior dictates high investments.

Similarly, under-investment in HC treatments might reflect a competitive motive, as

suggested by Fershtman, Gneezy, and List (2012); a subject who reduces her own investment

can guarantee the highest payoff in the group to herself. This motive is indistinguishable

from pecuniary profit-maximization when the complementarity is low, since they both lead

to lower investments.

Recall that the experiment uses a between-subjects design in which each subject partici-

pates in a single treatment. We chose this design because learning the strategic environment

(which varies with the degree of complementarity) and forming correct beliefs about the

actions of other players is not a trivial task that takes time and experience. We were worried

that if a subject would participate in treatments with different degrees of complementarity,

her response to one level of complementarity might contaminate her beliefs and responses in

other levels. One limitation of this design (beyond being costly) is that we cannot correlate

the classification of a particular subject across treatments. This is an interesting question

that remains to future investigation.

An alternative conceivable hypothesis is that subjects, even those who are profit-seeking,

may deviate from profit-maximizing investments because they are confused and do not un-

derstand the rules of the game. Given their conjectures, they may simply fail to calculate

the profit-maximizing investments.

To discriminate between confusion and behavioral motives, we examine “payoff-relevant”

usage of the calculator. We outline simple procedures to identify whether subjects are

able to compute the pecuniary best-response to their conjectures using the calculator and

if subjects of different types vary in their ability; we then proceed to explore potential

differences between types in how their actual investments are related to their calculated

hypothetical investments.

5.5.1 Homo pecuniarius versus Homo behavioralis

For each treatment and subject type, Figure 5 displays the cumulative distribution func-

tions of: (i) hypothetical investments, (ii) actual investments, and (iii) best-responses to

conjectures. The distributions are based on choices and calculations made by all subjects.15

Figure 5 shows notable differences in the CDFs of actual investments between Type 1

and Type 2 subjects across all treatments (see tests in Appendix I.3.2). We therefore turn

15A detailed methodology on calculating the distributions for hypothetical investments can be found in
Appendix I.1
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to investigate where does this difference originate from? Sub-section 5.4 documents that

the beliefs of both types are coherent, so differences in investments cannot be attributed

to differences in beliefs. We are left with two possibilities as to the origin of different

choices: differences in the understanding of the environment and in calculating pecuniary

best responses, or alternatively – differences in the choice of investments subsequent to the

hypothetical choice calculations.

In LC, the CDFs of hypothetical investments of Type 1 and Type 2 subjects overlap. In

HC, the CDFs are very close (but do not exactly overlap, see Appendix I.3.3).16 We are there-

fore led to the conclusion that differences in actual investments reflect how the different types

of subjects follow their hypothetical investments. Type 1 subjects (Homo pecuniarius) con-

sistently pursue their hypothetical choices, whereas Type 2 individuals (Homo behavioralis)

opt to frequently deviate from them (see Appendix I.3.4). This is true in all treatments: in

LC, Type 2 subjects make altruistic investments (actual investments are much higher than

hypothetical investments); in HC environments, Type 2 pursue competitive motives (actual

investments are much lower than hypothetical investments).17

Calculator utilization varies with the complexity of the treatments. In HC treatments,

it is relatively simple to mentally calculate pecuniary best responses. Some subjects who

do not activate the calculator may form mental representations of similar objects, as it is

often straightforward to establish that the pecuniary best-response for many conjectures is

full-investment. In LC treatments, it can be challenging to figure out the pecuniary best

response without the aid of the calculator.

In Appendix H we present more evidence that using the calculator provides the analyst

with an important control to observe subjects’ beliefs and verify their understanding of the

experimental environment. Figure H.13 depicts the CDF of actual investments and hypo-

thetical investments by treatment and type, for subjects who activated the calculator during

the last 5 rounds (left) and those who did not (right). In LC treatments, the hypothetical

investments of both types are very close. However, while actual investments of Type 1 ap-

proximate their hypothetical investments, the investments of Type 2 are much higher. In

HC treatments, among subjects who activate the calculator during the last 5 rounds, the

16In LC, hypothetical investments of both types are about 2-3 tokens higher than the pecuniary best-
responses to conjectures. In HC, between 60% and 70% of hypothetical investments coincide with the
pecuniary best response of full investment. The remaining cases are just 1-2 tokens lower than pecuniary
best-responses.

17Out of concern for potentially priming investment decisions, we use a between-subject design. For this
reason we cannot make claims as to the identity of types across treatments. That is, an agent who over-invests
relative to pecuniary best-response in a low complementarity environment might, in principle, under-invest
had she participated in the HC treatment. The opposite pattern may emerge as well, but we are unable to
establish any such patterns since agents do not participate in different treatments.
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emerging picture is similar: hypothetical investments of both types are very close, but while

Type 1’s investments are close to their hypothetical choices, Type 2 invest much less. Fo-

cusing on subjects in HC who do not activate their calculator, we find that Type 1 subjects

make hypothetical and actual investments that are very close to pecuniary best-responses

(about 67% of them make full investment). Their investments are even higher than those

of Type 1 subjects who use the calculator. This suggests that many subjects can mentally

optimize in late rounds (they represent 34 out of 73 subjects who do not use their calcula-

tors in rounds 16-20, in both LC and HC treatments ). Hypothetical investments of Type 2

subjects in HC who do not activate their calculator in late rounds are lower than pecuniary

best-response (only 45% are full investment), and their actual investments are even lower

(only 6% are full investment). This suggests that non-pecuniary motives are still important

for this sub-group, although some of them (less than 10 subjects) are possibly confused.

As mentioned above, both the variation in the degree of complementarity and the mag-

nitude of optimal investments may affect non-pecuniary motives. When pecuniary best-

response investments are low (LC treatments) some agents may enhance their overall payoff

through small altruistic over-investments. Such joy of giving could be tainted, or less salient,

in an environment where profit maximizing is associated with a high investment. By the

same token, when the optimal investment is high, a competitive motive becomes more ap-

pealing as some agents recognize that small reductions in investment are both costly to other

players and useful to boost their own relative standing within the group. This competitive

motive is indistinguishable from pecuniary-profit-maximizing in LC environments. In fact,

behavioral motives may operate side by side with profit-seeking behavior as agents consider

all these aspects in their decision making. This observation motivates the following analysis.

5.6 Deviations from Pecuniary Best-Responses: Loss Decomposi-

tion

The analysis so far suggests that most deviations from profit-maximizing strategies cannot

be accounted for by confusion or miscalculation. Type 2 subjects, in particular, appear to

pursue a combination of monetary and non-monetary goals, which results in lower pecuniary

payoff. To further quantify the relative importance of confusion and behavioral motives

for subjects’ decisions, we decompose their monetary consequences (monetary payoff loss)

into two distinct components: the first can be interpreted as an upper-bound on the loss

that could be attributed to confusion, if present; the second captures any losses above and

beyond what can be explained by confusion. As we demonstrate below, the monetary loss

of confusion is rather small and the bulk of monetary losses relative to pecuniary-optimal
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Figure 5. CDF of Hypothetical Investments, Actual Investments and Best Response to Conjectures (Rounds 16-20).

investments are attributable to alternative motives that drive a wedge between investment

choices and pecuniary best-responses.

The approach we take in the decomposition is the following: given a triplet of investments

by others, there is a total monetary loss incurred by choosing the actual investment rather

than the pecuniary-optimal investment. We decompose this loss into a Hypothetical Loss

Index, which measures what proportion of it is due to not being able to figure out the

monetary-optimal hypothetical investment (entered into the calculator), and a Behavioral

Loss Index that measures the proportion of the monetary loss that cannot be attributed to

failure to calculate the monetary-optimal investment.

5.6.1 Loss due to Confusion

An upper bound on the loss that is due to confusion can be calculated by measuring the de-

crease in monetary payoff associated with deviations of hypothetical investments (entered by

subjects into the calculators) from monetary best-responses. This calculation is performed
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by sampling triplets, denoted by g−i, from the empirical distribution of investments made

during the last five rounds in each session. For each such triplet, we calculate the monetary

best-response, denoted by g∗i (g−i). We independently sample a value (ĝi) from the empirical

distribution of hypothetical investments at the type-session level. We then calculate the dif-

ference between the monetary payoff associated with hypothetical investments, denoted by

π (ĝi, g−i), and the (maximum) pecuniary payoff given g−i, denoted by π (g∗i , g−i). Normaliz-

ing the difference π (ĝi, g−i)−π (g∗i , g−i) by π (g∗i , g−i) delivers a loss-function that provides an

upper bound on the proportional monetary-loss associated with deviations of hypothetical

investments from monetary best-responses, which we call Hypothetical Loss Index.

Figure 6 plots a histogram of the relative frequencies of the Hypothetical Loss Index,

showing that most subjects, irrespective of their type and treatment, are able to pinpoint

with remarkable accuracy the monetary best response using the calculator. Table 3 presents

averages and confidence intervals for Hypothetical Loss Index by type and treatment, pro-

viding further evidence that most agents have little or no confusion about optimal pecuniary

responses. As mentioned before, deviations tend to be marginally larger in the more de-

manding LC environment. However, even in that setting, most subjects enter hypothetical

investments that imply fairly small monetary losses relative to optimal pecuniary invest-

ments. Details about how this index is calculated are in Appendix I.2.

Table 3
Hypothetical Loss Index

LVCM LC HC

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Average 0 -0.33 -1.16 -2.21 -0.28 -0.78

95% CI [0.00, 0.00] [-0.89, 0.22] [-2.02, -0.29] [-4.21, -0.20] [-0.52, -0.04] [-1.76, 0.19]

Note: Each cell in the first and second rows reports, respectively, the average value and the 95%
confidence interval of the Hypothetical Loss Index, disaggregated by degree of complementarity
and type. The mean and standard error of this index are calculated at the individual level. To
do so, we first draw 1,000 triplets from the actual investment distribution at the session level;
each session generates its own set of triplets, which are then assigned to all participants within
that session. Separately, for each individual, we draw 1,000 random investment values from the
investments made in rounds 16 to 20. For each triplet, we identify the hypothetical investment
corresponding to the bin that contains the generalized mean of the triplet. We then compute
the payoff associated with the individual’s hypothetical investment and compare it to the payoff
associated with the pecuniary best response for each triplet. This procedure yields an estimate
of the Hypothetical Loss Index for each draw. Finally, we compute the average and standard
error of the index by type and degree of complementarity, which are used to construct 95%
confidence intervals.
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Figure 6. Histogram of Hypothetical Loss Index

5.6.2 Loss due to Non-Pecuniary Motives

We now turn to construct an index for the willingness to forego monetary returns for be-

havioral motives. The Behavioral Loss Index is the difference between the pecuniary payoff

associated with the actual chosen investment and the pecuniary payoff associated with a

hypothetical investment (given a triplet g−i, just like the Hypothetical Loss Index ), defined

as: π (gi, g−i) − π (ĝi, g−i), and normalized by π (g∗i , g−i). This difference is defined at the

subject-treatment level (details in Appendix I.2).

Figure 7 displays histograms of the relative frequency of the Behavioral Loss Index for

each of the treatments. Unlike the Hypothetical Loss Index, there are significant differences

between types, which we overview in some detail in Table 4. For Type 1 subjects (Homo

pecuniarius), the Behavioral Loss Index is not significantly different from zero on average,

suggesting that most subjects generally follow their hypothetical investments. In contrast,

Type 2 subjects (Homo behavioralis) are willing to forego some monetary rewards; crucially,

this occurs even though most of them are able to identify investments that are close to
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Figure 7. Histogram of the Behavioral Loss Index

pecuniary best responses, as documented above. One observation in this regard is that Type 2

subjects make choices that are significantly further away from their hypothetical investments

(relative to Type 1 subjects) regardless of how close their hypothetical investments are to

pecuniary best responses. That lends further support to the hypothesis that alternative

behavioral motives, rather than just confusion about the environment, account for their

chosen investments.

5.6.3 Conditional Cooperation

It is conceivable that some Homo behavioralis subjects may try to match other group mem-

bers’ investments, behavior similar to “conditional cooperators” (Fischbacher et al., 2001;

Fischbacher and Gächter, 2010). The standard procedure to detect conditional cooperation

is to elicit subjects’ beliefs about others’ investments. Our experimental setting delivers

valuable non-choice data – conjectures about others’ investments, which we already showed

are coherent with chosen investments by others, and can help to identify this behavior. It
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Table 4
Behavioral Loss Index

LVCM LC HC

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Average -0.15 -2.87 -0.18 -3.41 -0.20 -1.99

95% CI [-0.47, 0.18] [-6.07, 0.33] [-1.17, 0.82] [-6.26, -0.56] [-0.57, 0.16] [-3.71, -0.28]

Note: Each cell in the first and second rows reports, respectively, the average value and the 95%
confidence interval of the Behavioral Loss Index, disaggregated by degree of complementarity
and type. The mean and standard error of this index are calculated at the individual level.
To do so, we first draw 1,000 triplets from the actual investment distribution at the session
level; each session generates its own set of triplets, which are then assigned to all participants
within that session. Separately, for each individual, we draw 1,000 random investment values
from the investments made in rounds 16 to 20. For each triplet, we identify the hypothetical
investment corresponding to the bin that contains the generalized mean of the triplet. We then
compute the payoff associated with the individual’s actual investment and compare it to the
payoff associated with the hypothetical investment for each triplet. This procedure yields an
estimate of the Behavioral Loss Index for each draw. Finally, we compute the average and
standard error of the index by type and degree of complementarity, which are used to construct
95% confidence intervals.

is important to emphasize that even if all subjects cared only about pecuniary payoff, their

best-response function (as shown in Section 2) is an increasing function of their expectations

of others’ investments, while in the special case of LVCM (which is studied in the literature

cited above) investing zero is a dominant strategy for selfish agents.

In Table 5 we report results from a regression analysis in which the dependent variable

is the investment made by each subject and the right-hand-side variable is the average con-

jecture about others’ investments. For the linear case (LVCM) these results suggest that

subjects are willing to match up to 50 percent of what they expect to be the average invest-

ment of others. For the case of LC, subjects are willing to invest an amount that is close to

what they predict to be the average investment of others.18 But perhaps the most interesting

findings are those in the case of HC, in which a subject who is motivated by pecuniary mo-

tives alone should contribute more than the average investment she expects others to make.

In other words, in these treatments the conditional-cooperation motives should reinforce the

monetary payoff subjects obtain when they coordinate on high investments. In these set-

tings, while we find a positive association between investments and conjectures, investments

match only about 60% of the average conjecture. It is apparent that conditional cooperation

cannot account for the choices made by Homo behavioralis subjects in HC settings, lend-

18We cannot reject the hypothesis that, in LC treatments, Type 2 subjects make investments that match
exactly their average conjecture (we test the null hypothesis H0 : β̂+ δ̂βLC = 1, which results in F=0.14 and
p > F = 0.709).
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ing further support to the hypothesis that these individuals respond to other non-pecuniary

motives, such as competitiveness.

Table 5
Response of Subjects’ Investments to Conjectures

about Others’ Investments

Variable Coefficient Number of observations

ĝ−i

0.566 94
(0.087)

DLC × ĝ−i
0.462 232
(0.115)

DHC × ĝ−i
0.056 155
(0.151)

Hypothesis F p > F

H0 : δ̂LC = 0 16.24 0.0001

H0 : δ̂HC = 0 0.14 0.7117

H0 : δ̂HC = δ̂LC 7.88 0.0068

Note: Results for the regression: gi,t = βĝ−i,t +∑
δk (Dk × ĝ−i,t), where gi,t is the investment of a Type

2 subject i in round t, ĝ−i,t the arithmetic mean of
conjectures of Type 2 subject i in round t, Dk is a
dummy variable for each complementarity degree (k ∈
{LC,HC}), when the baseline is the LVCM treatment.
This means that the total effect on LC is 1.028 and the
total effect on HC is 0.622. The standard errors (re-
ported in parentheses) are clustered at the individual
level. At the bottom part of the table we test for equal-
ity of the coefficients.

6 Evidence from Response Times

Using non-choice data we obtain precise measures of subjects’ response times and intensity

of calculator usage. This information is a valuable way to peek at the mechanics of individual

decision making. Analyzing decision times in public good games has become increasingly

popular since Rand et al. (2012) reported that shorter response times are positively correlated

with higher investments in a one-shot LVCM experiment. This finding was interpreted as

evidence that humans are instinctively generous. However, this interpretation has been

challenged by, among others, Recalde et al. (2018), who point out that in the LVCM the

only possible deviation is to over-invest, making it hard to distinguish between subjects who
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instinctively over-contribute and those who rush and make genuine mistakes.19

6.1 Response Times in the First Round

First, we replicate the analysis of Rand et al. (2012). For comparability, we consider only the

first-round investments in the LVCM treatment. The results confirm the findings of Rand

et al. (2012): subjects who invest zero wait 34 seconds on average before logging their choice,

while for those who make positive investments it takes 25 seconds on average.

Our experimental design allows us to go far beyond the one-shot game and the case of

no complementarity. The analysis of later rounds makes it possible to assess how response

times are associated with both the size and the direction of deviations of investments from

pecuniary best responses. We combine non-choice data and response-time information to

illustrate how some of the conclusions about instinctive generosity drawn by Rand et al.

(2012) are inconsistent with our findings. More generally, we argue that valuable informa-

tion can be elicited from variation in the length of time it takes subjects to choose their

investments and the intensity of calculator usage over that interval.

6.2 Differences across Treatments and Types

By analyzing the patterns of response times over several periods it is clear that subjects tend

to respond faster in later rounds than in earlier rounds (Figure 8). This is not surprising

given that participants become more familiar with the game at later rounds.

The increase in speed is closely related to calculator usage, which declines as rounds

progress. This can be seen in the left panel of Figure 9; for this reason, at the end of the

section we combine these two measures to compute the average processing speed for each

treatment. The right panel of Figure 9 shows the five-round moving average of the number

of new conjectures as a share of the overall number of conjectures considered in all previous

rounds. A steep drop in the percentage of new conjectures is visible after the first few

rounds: this is consistent with the hypothesis that most subjects try out conjectures early

in the experiment and, as they gain more experience and learn the aggregate distribution of

investments, the innovation rate of conjectures declines.

As shown in Figure 10 and Table 6, we observe considerable differences in the average

response time across treatments. Subjects in LVCM treatments take significantly less time

19Recalde et al. (2018) design a voluntary investment experiment in which the dominant strategy is in the
interior of the strategy space, and replicate the finding of Rand et al. (2012) when the equilibrium investment
is below the midpoint of the choice space. However, when the equilibrium is located above the midpoint,
they find a negative correlation between response times and investments.

28



Round

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

15

65

60

55

50

45

40

35

30

25

20

10

5

0

R
es
p
on

se
T
im

e
(s
ec
on

d
s)

LVCM LC HC
95% CIs for the

fitted values

70

Figure 8. Average response time across rounds. This figure shows the evolution of the average
response in each treatment. Standard errors (for the confidence intervals) are clustered at the
individual level.

than in the LC treatments, suggesting that more complex environments, like LC, elicit more

pondering of potential choices. The HC response times lie between those of the two other

treatments, suggesting that high complementarity settings are less challenging than low

complementarity ones.

We also examine our non-choice data through the lens of the typology described in Section

5.2. This reveals interesting discrepancies between types in both the quantity and quality of

time usage. In the LVCM and HC treatments, Homo pecuniarius (Type 1) subjects seem to

respond faster than Homo behavioralis (Type 2). Differences are not significant and we take

them with some caution. Nonetheless, the disparity in estimated time use clearly indicates

that in one set of treatments (LVCM) the marginally faster subjects are those who invest

little or nothing, while in another set (HC) the quicker subjects are those who get closer to

full-investment. Hence, both response time and the direction of deviations from pecuniary

best responses seem to depend on the specific environment. More importantly, we find little

or no evidence that speedy choices systematically and significantly imply over-investment.

In contrast, in LC treatments, Homo pecuniarius subjects take longer to submit their

choices than Homo behavioralis, possibly because calculating the optimal level of pecuniary

investment with precision is harder when complementarity is low. Rubinstein (2007) obtains
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Figure 9. Use of the calculator over rounds. The left panel reports the proportion of subjects who activated the calculator
by treatment. The right panel displays the five-round moving average of new conjectures as a percentage of overall conjectures.
For period 4 we include data from the practice round, for which the percentage of new conjectures is 100%.

similar results, finding that it takes more time to make decisions that require cognitive

reasoning than to make instinctive choices. Since differences in raw time usage across types

in the LC case are poorly identified, we resort to additional measurements to examine the

hypothesis that Type 1 agents may try harder to figure out pecuniary best responses; as we

show below, agents who play close to pecuniary best response in the LC treatments not only

require more time in order to make a choice but also use the calculator more intensively and

consider a higher number of potential combinations.20

6.3 Processing Speed

Given the evidence presented so far on raw time use data, it is crucial to distinguish between

subjects who spend much of their time idly staring at the screen and those who utilize

the calculator. To identify this difference we compute the average amount of time subjects

spend entering any given combination in the calculator. This is done by dividing the total

time spent on the calculator by the number of combinations that are considered during

that time interval. The resulting statistic, which can only be computed for those who use

the calculator, is a proxy for the speed at which information is processed. The bottom

panel of Table 6 shows that, across all treatments, Homo pecuniarius subjects process more

20Response times of Type 1 and Type 2 subjects in LC treatments are consistent with the typology
described in Rubinstein (2016). He divides subjects into two types according to their response time, arguing
that subjects who make quick decisions are more instinctive while those who are slower often make strategic
considerations.
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Figure 10. Response-time frequencies. Each solid
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combinations per unit of time than Homo behavioralis subjects (the difference is significant

in HC treatments).

Moreover, regardless of their type, all subjects process combinations significantly faster

in the LC treatments. This provides further evidence in support of the hypothesis that in

more complex environments, like the LC, subjects tend to exert more effort when choosing

an investment.

7 Discussion of Related Literature

It is often challenging to interpret decision-making through the examination of choice data

alone. For this reason, several studies have started collecting non-choice data to shed light

on the decision process of players. Throughout each session, we give participants access to

a payoff calculator. By using the calculator subjects can see the monetary payoff associated

with as many hypothetical investments as they wish, including different hypothetical values

of their own choice. We record every trial that subjects enter in the calculator during

both the practice period and the experiment. These non-choice data are different from

information collected using “mouse lab” (see, among others, Camerer et al., 1993; Costa-

Gomes et al., 2001; Johnson et al., 2002; Costa-Gomes and Crawford, 2006; and Brocas

et al., 2014), “eyetracking” (see, among others, Knoepfle et al., 2009; Wang et al., 2010;

Reutskaja et al., 2011; and Arieli et al., 2011), analysis of response times (see Spiliopoulos

and Ortmann, 2018 for a literature review), rational inattention analysis (see, among others,

Caplin and Dean, 2015; and Dean and Neligh, 2023), choice process (Caplin et al., 2011;
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Table 6
Response Times and Processing Speed, by Type and Treatment

Response Times, by Type and Treatment

Type 1 Type 2 Overall
Fitted

95% CI
Fitted

95% CI
Fitted

95% CISeconds Seconds Seconds
(SE) (SE) (SE)

LVCM 11.44 [6.82,16.07] 13.62 [10.11, 17.12] 12.46 [9.49, 15.43]
(2.36) (1.79) (1.52)

LC 27.76 [22.15, 33.37 ] 26.57 [20.37,32.77] 27.29 [23.12, 31.47]
(2.86) (3.16) (2.13)

HC 14.68 [11.56,17.79] 16.25 [12.30,20.21] 15.19 [12.73,17.65]
(1.59) (2.02) (1.26)

Processing Speed, by Type and Treatment
(Response Time Divided by Number of Combinations Entered in the Calculator)

Type 1 Type 2 Overall
Fitted

95% CI
Fitted

95% CI
Fitted

95% CISeconds Seconds Seconds
(SE) (SE) (SE)

LVCM 17.97 [9.52, 26.41] 18.80 [13.83,23.76] 18.43 [13.77,23.09]
(4.30) (2.53) (2.38)

LC 14.32 [11.83,16.80] 17.27 [13.58,20.96] 15.41 [13.32,17.51]
(1.27) (1.88) (1.07)

HC 15.26 [12.91, 17.60] 21.95 [18.54,25.36] 17.54 [15.47,19.62]
(1.20) (1.73) (1.06)

Note: The standard errors are clustered at the individual level.

Agranov et al., 2015; Kessler et al., 2017), or fMRI techniques (see Bhatt and Camerer, 2005;

Smith et al., 2014). When employing these techniques, participants are usually (except for

response time) aware that experimenters are gathering data, and this may influence their

choices. For example, in experiments employing choice process data, instantaneous decisions

are incentivized, making explorations costly. Similarly, although experiments using mouse

lab are certainly less intrusive than eye-tracking, they require the subject to interact with the

interface in a particular, and at times unnatural, way (usually sequentially revealing payoff-

relevant information). Finding the optimal strategy in our investment problem makes the use

of the calculator often necessary, as payoff functions are nonlinear, and individual gains are

affected by the dispersion of players’ investments. For these reasons, subjects depend on the

calculator to evaluate alternative strategies and to make informed choices. The input they

enter into the calculator delivers a valuable description of their beliefs about the investments
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of other agents. In this sense, our method provides a non-intrusive way to collect high-

quality non-choice data. A further advantage of this approach is that data collection is

simple and requires no special technology or equipment; thus, it can be applied easily to the

analysis of most individual or group decision problems either in an experimental setting, and

even in survey analysis. Many other studies involving complex payoff calculations provide

profit calculators. However, it is highly unusual for researchers to analyze the inputs entered

into these calculators. In most cases, studies merely compare outcomes with and without

the calculator, as shown in the work of Requate and Waichman (2011). Consequently,

methodologies that rigorously and systematically analyze this type of data are scarce.

One exception is Cherry, Salant, and Uler (2015) who study an output-sharing game with

negative externalities, in which subjects’ payoffs depend on their own investment choices

and the aggregate investment of the other group members. They use a combination of

choice and non-choice data to analyze the behavior of participants - own investments and

conjectures about the aggregate investment of others. Like us, they extract the conjectures

from a payoff calculator, which they call Situation Analyzer (though they retain only the

last conjecture subjects enter before submitting a choice). However, our methodology to

analyze departures from payoff-maximizing strategies is more comprehensive and flexible for

at least three reasons. First, Cherry, Salant, and Uler (2015) approach does not distinguish

between correct and incorrect beliefs. We consider this a crucial step that is essential for

drawing any conclusions about non-pecuniary motives; otherwise, when observing deviations

from the monetary-optimal strategies, it is impossible to disentangle whether deviations are

due to incoherent beliefs or behavioral motives. Second, Cherry, Salant, and Uler (2015)

do not collect data on hypothetical investments. They ask subjects to enter a conjecture

about the aggregate investment of others. Then they display the potential earning given the

conjecture. This design feature makes it impossible to identify confusion, as even subjects

who barely understand the instructions may select the investment associated with the highest

potential payoff displayed on the screen. Thus, the implicit assumption is that subjects do

not exhibit confusion, and when deviations from the model predictions are observed, they

can be entirely attributed to behavioral motives. In contrast, our methodology allows us

to break down departures from the money-maximizing strategy into two main components:

deviations due to confusion and due to non-pecuniary motives (as described extensively

in section 5.6). Third, Cherry, Salant, and Uler (2015) propose three different competing

theories that may account for deviations from the pecuniary best response given subjects’

conjectures - altruism, conformity, and extremeness aversion. Then using their choice and

non-choice data, they quantify the explanatory power of each of the theories and conclude

that subjects exhibit altruism and conformity. In comparison, our approach is more flexible
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as we do not attribute deviations to a parametric model of preferences. Moreover, unlike

Cherry, Salant, and Uler (2015), we are able to measure the magnitude of the non-pecuniary

motives.

We design the calculator in a way that allows agents to change one or more conjec-

tures about other agents’ investments and/or adjust their own hypothetical investment in

whichever order, by any amount and as many times as they want. In this sense subjects are

let free to explore the payoff space in countless ways. Our experimental design allows agents

to exactly reproduce and modify investments observed in previous rounds, or to consider

significantly different scenarios since they face no constraint in the number and type of com-

binations they are allowed to evaluate. This results in rich distributions of non-choice data

that vary over the continuous set of potential investments and can be studied in conjuction

with the distributions of hypothetical and actual choices.

It is worth emphasizing that, since our analysis concentrates on the joint investment

problem of agents facing non-linear returns, we model these returns as the product of comple-

mentary investments and consider treatments with different levels of gains from cooperation.

A constrained version of our problem corresponds to the LVCM. This game emphasizes the

tension between private incentives and social efficiency, examining how individual choices

shape group outcomes. The LVCM assumes a production technology of the public good that

is linear and additively separable in agents’ investments. Under this assumption (and if the

marginal per capita return is lower than one) the dominant strategy for agents with self-

regarding preferences is to invest nothing at all (i.e., free ride) rather than make a positive

investment that results in a private cost and a social benefit. Hence, this linear specification

focuses on the choice problem of an agent whose profit-maximizing choice is independent of

other agents’ choices.21 Yet, complementarity is key in many environments in which indi-

vidual investments entail costly effort. For example, a household may be viewed as a group

in which individual efforts are strong complements in generating positive group outcomes.

Similarly, modern charities often rely on matching efforts by different stakeholders to raise

funds and reach a socially valuable objective. Crucially, in several joint endeavors such as

school funding activities, neighborhood improvement initiatives and even scientific research

projects, the return on a participant’s effort depends on the level of effort that all other

participants choose to exert, and too much heterogeneity in individual investments may

be detrimental. Identifying how subjects coordinate in such joint investment environments

21The experimental literature is much too vast and thoughtful to be covered fairly here. An interested
reader is referred to Ledyard (1995) for an older but helpful survey and a more recent survey by Vesterlund
(2016). The robust experimental finding is that contributions are significantly higher than zero in early
rounds but diminish over time. Positive contributions have been interpreted, among other explanations, as
reflecting confusion, altruism, or willingness to cooperate if others do.
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is essential to make sense of empirical observations.22 In practice, a provision technology

featuring complementarity in individual investments captures two essential features of joint

investment problems. First, an increase in one’s investment raises the marginal return on

others’ investments and, second, the provision is more efficient when agents’ investments are

relatively homogeneous.

Lastly, our work is related to the experimental literature that studies coordination fail-

ures in games with strategic complementarities in players’ decisions. The classic example is

the two-by-two stag hunt game in which there are two Nash equilibria in pure strategies,

one payoff dominant and the other risk dominant (see Cooper et al., 1992). In this type

of coordination game, the Pareto superior (payoff-dominant) outcome is not always chosen;

the equilibrium selection depends on the basin of attraction and the optimization premium

(see Battalio et al., 2001; Van Huyck, 2008). The current study introduces coordination

considerations in a public good game. Our experimental result of no convergence to the

unique Nash equilibrium in the case of weak complementarity is in sharp contrast to experi-

mental results in binary-action games and suggests that a richer strategy space may induce

interesting behavioral dynamics.

When the degree of complementarity supports two equilibria, our game superficially re-

sembles order-statistic games (see Devetag and Ortmann (2007) for a survey of experimental

results). The players in these games select an integer number between 1 and k, and their

payoff is decreasing in the distance between their chosen number and some order statistic.

Order statistic games have multiple Pareto-ranked equilibria and have been studied experi-

mentally in the context of coordination. For example, in the extreme weakest-link game the

agent’s payoff depends on the minimum of all the chosen numbers. Van Huyck et al. (1990)

show that subjects fail to coordinate on the efficient outcome when groups are large. There

are, however, important differences between order-statistic games and our joint investment

framework. First, order-statistic games do not enable free-riding. Second, in our framework,

the earnings from the joint account depend on the investments and on the investments’ dis-

persion, whereas order-statistics games do not account for heterogeneity in players’ choices.

Finally, in terms of equilibrium selection: coordination in order-statistic games is challenging

because there exist k − 1 equilibria that are relatively fragile, whereas in our environment

only the Pareto-efficient equilibrium is stable.

22Andreoni (1993) considers complementarity between the private and public good; Keser (1996) studies
utility that is non-linear in the private good; Harrison and Hirshleifer (1989); Croson et al. (2005) study
public good experiments based on the weakest-link mechanism of Hirshleifer (1983). Steiger and Zultan
(2014) compare the linear case and a case in which the marginal return from the public good increases as
the number of contributors increases (through increasing returns to scale).
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8 Conclusion

In this paper we examine and compare the dynamic decision processes of individuals who

participate in a joint investment problem. We carry out the analysis in an environment

featuring complementarity between private investments into a common account. The envi-

ronment can exhibit multiple equilibria.

Our experimental setting is such that agents’ beliefs about other agents’ actions affect

their pecuniary payoffs. The setting allows us to gather rich information on the way agents

learn about the environment and about the motives and procedures of other agents. We do

not elicit beliefs explicitly but, rather, collect data on the inputs subjects enter in the payoff

calculator. These include conjectures about other group members’ investments.

Consistent with theoretical predictions we find a positive relationship between aggregate

investments and the degree of complementarity. In HC environments subjects learn to co-

ordinate, moving towards the socially preferable equilibrium, but do not reach the Pareto

efficient outcome. Similarly, when complementarity is very low, investments decrease but do

not reach the unique zero-investment equilibrium. Subjects also seem to respond to com-

plementarity when its intensity is sizable but not sufficiently high to introduce a second

full-investment equilibrium; in this case, they persistently over-invest and show little or no

tendency towards the unique zero investment.

The use of detailed choice-process data, together with the manipulation of the intensity

of complementarity, allows us to identify the empirical relevance of non-pecuniary motives

in the decision-making process. We find that deviations from the profit-maximizing strategy

cannot be attributed to confusion and that different types of non-pecuniary motives emerge

when we change the intensity of complementarity among individual investments.

Crucially, not all subjects are equally sensitive to non-pecuniary motives. We find ev-

idence that while some individuals (Homo Pecuniarius) can be clearly described as profit

seekers who are willing to make cognitive efforts to find pecuniary best response strategies,

others (Homo Behavioralis) are able to calculate the money-maximizing strategy but delib-

erately deviate from it towards altruistic or competitive actions. The interaction of different

types of participants is key to understanding how groups behave and why we observe dif-

ferent aggregate patterns under different levels of complementarity. The fact that Homo

Behavioralis subjects are willing to sacrifice some monetary rewards to deviate from pecu-

niary best-response strategies may lead to imperfect convergence to selfish equilibrium, not

only as a result of their strategic decisions but also because Homo Pecuniarius are aware of

their choices and best-respond to them. The presence of Homo Behavioralis increases social

welfare when complementarity is low, as it restrains group investments from collapsing to
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zero, but it reduces welfare when complementarity is high and full investments would be

optimal.
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A Pecuniary Best-Response Function and Symmetric

Equilibrium

Player i’s payoff is

πi = ω − gi + β

(
n∑

i=1

gρi

)1/ρ

,

where ρ ≤ 1 denotes the degree of complementarity, gi denotes individual i’s investment in

the group account, ω is the endowment, and β is a constant. The best response of player i

is a unique solution, g∗i (g−i), to the first order condition

0 =
∂πi

∂gi
= β

(
gρi +

∑
gρ−i

) 1−ρ
ρ (

gρ−1
i

)
− 1

β
(
gρi +

∑
gρ−i

) 1−ρ
ρ

= g1−ρ
i

gρi +
∑

gρ−i = gρi β
ρ

ρ−1

gρi

(
β

ρ
ρ−1 − 1

)
= (n− 1)

∑
gρ−i

n− 1
.

In the last line we multiply and divide the right hand side by (n − 1) so the best response

of player i is defined as a function of Mρ =
(∑

gρ−i

n−1
.
)1/ρ

. Finally, defining k ≡
(

n−1

β
ρ

ρ−1−1

) 1
ρ

yields:

g∗i (g−i) = k

(∑
gρ−i

n− 1

)1/ρ

.

The second order condition

∂2πi

∂g2i
= (1− ρ)β

(
gρi +

∑
gρ−i

) 1−ρ
ρ

−1

g
2(ρ−1)
i + (ρ− 1)β

(
gρi +

∑
gρ−i

) 1−ρ
ρ

gρ−2
i

= (ρ− 1)β
(
gρi +

∑
gρ−i

) 1−ρ
ρ

gρ−2
i

(
1− gρi

gρi +
∑

gρ−i

)
< 0,

which implies concavity of πi.
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A.1 Pure strategy equilibria are symmetric

Suppose that there exists a non-symmetric equilibrium g∗ and denote by g∗min = min {g∗} <

max {g∗} = g∗max . For the case of k ≤ 1, let (n) = {i : gi > gj∀j ∈ N}, then if g∗−(n) denotes

the vector of investment values different from g∗(n), it follows that kMρ

(
g∗−(n)

)
< g∗max,

which is a contradiction. Similarly, if k ≥ 1, and (m) = {i : gi < gj∀j ∈ N} it follows that

kMρ

(
g∗−(m)

)
> g∗min, which is a contradiction. Finally, when k = 1, any symmetric strategy

profile is a Nash equilibrium.

A.2 Absence of symmetric Nash equilibrium in mixed strategies

A symmetric NE in mixed strategies is a joint distribution µn−1 over g−i such that i is

indifferent between all gi ∈ supp (µ). In other words, for any two strategies, g′i and g′′i , in

the support of µ, it must be that:

ω − g
′
i + β

∫
supp(µn−1)

(
g
′ρ
i +

∑
gρ−i

)1/ρ
dµn−1 (g−i) = ω − g

′′
i + β

∫
supp(µn−1)

(
g
′′ρ
i +

∑
gρ−i

)1/ρ
dµn−1 (g−i)

We will show that g∗i - the BR of player i to µn−1 is a singleton, and therefore there is no

symmetric NE in mixed strategies. The first order condition is:

∂πi

(
gi, µ

n−1 (g−i)
)

∂gi
= −1 + β

∫
supp(µn−1)

g′′i

(
gρi +

∑
gρ−i

) 1−ρ
ρ

gρ−1
i dµn−1 (g−i) = 0

The second derivative of player i’s payoff is:

∂2πi

(
gi, µ

n−1 (g−i)
)

∂g2i
=

= β

∫
supp(µn−1)

((
1− ρ

ρ

)(
gρi +

∑
gρ−i

) 1
ρ
−2

ρgρ−1
i gρ−1

i +
(
gρi +

∑
gρ−i

) 1−ρ
ρ

(ρ− 1) gρ−2
i

)
dµn−1 (g−i)

= β

∫
supp(µn−1)

(1− ρ)
gρi(

gρi +
∑

gρ−i

) (gρi +
∑

gρ−i

) 1
ρ
−1

gρ−2
i +

(
gρi +

∑
gρ−i

) 1
ρ
−1

(ρ− 1) gρ−2
i

 dµn−1 (g−i)

= β

∫
supp(µn−1)

(1− ρ)
(
gρi +

∑
gρ−i

) 1
ρ
−1

gρ−2
i

 gρi(
gρi +

∑
gρ−i

) − 1

 dµn−1 (g−i) < 0.

That is, πi (gi, µ
n−1 (g−i)) is globally strictly concave and g∗i is a singleton. It follows that

there is no symmetric NE in mixed strategies.
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B Effects of Deviating from the Pareto Efficient Out-

come

The following table reports the profits at the Pareto efficient allocation (20, 20, 20, 20) and

the effect of reducing gi (own investment) on own profits and others’ profits. We used the

exchange rate to guarantee the same expected payment in all treatments. Obviously, the

elasticity of profits with respect to own investment varies as a function of the complementary

level. It is lowest at the LVCM treatment, but is around -.1 and -.05 for ρ = 0.70, 0.65,

respectively. So reducing own investment by 10% increases own income by approximately

0.5-1%. The effect in the high complementary treatment is in the opposite direction, with

elasticities of .023 and .0521 for ρ = 0.58, .054 respectively.

Notably, the effect on others’ profits is much higher (for non-linear treatments): a re-

duction in gi affects others’ income much more than own income - up to almost 10 time for

ρ = 0.58.

Table B.1
Profit elasticity around the Pareto efficient allocation

Treatment
ρ πi(20, 20, 20, 20) πi(19, 20, 20, 20)

Elasticity of πi wrt Elasticity of πj wrt
Group gi at (20, 20, 20, 20) gi at (20, 20, 20, 20)
LVCM 1 $32.00 $32.60 -0.3750 0.25

LC
0.70 $28.54 $28.69 -0.1003 0.25
0.65 $33.13 $33.22 -0.0502 0.2517

HC
0.58 $34.97 $34.93 0.0232 0.2520
0.54 $33.32 $33.23 0.0521 0.2522

Note: Each cell reports profits (in Canadian dollars, after exchange rate conversion). The fifth column reports the
elasticity of own profit, πi, with respect to own investment, gi, around the Pareto efficient allocation. For LVCM
and LC a decrease in investment results in increase in profits, while in the HC treatment investment and profits
are moving in the same direction. The rightmost column is the elasticity of others’ profits, πj , with respect to own
investment.
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C Distribution of investments

Figure C.1 displays the cumulative distribution of investments by treatment (i.e., by comple-

mentarity). The plots confirm the finding of Section 4: the median investment in LVCM is

zero even in the early rounds; in the case of the HC treatments, there is not much difference

between the distributions under ρ = 0.58 and ρ = 0.54. Investments increase as rounds

progress.

By contrast, when ρ is set to 0.65 or to 0.70, the mass distribution is more heavily

concentrated in the interior of the strategy space. Subjects choose to invest nontrivial

amounts even after 10 rounds. For example, in rounds 11 to 20, more than half of all

investments are larger than 5 tokens. Investments are range-bound and show little tendency

towards convergence.
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Figure C.1. Cumulative distribution functions. The dashed
lines display the cumulative distribution function for the indi-
vidual investments from rounds 1 to 10. The solid lines show the
cumulative distribution function for the individual investments
from rounds 11 to 20

.

A key feature of the production technology is that individuals not only benefit from

others’ investments but also enjoy incremental gains as coordination improves. The cost of

less-than-perfect coordination depends on the degree of complementarity; in the linear case

there is no additional loss due to lack of coordination. As complementarity increases, the

impact of dispersion grows and it becomes more costly to forego coordination; on the other

hand, when complementarity is high, a potential obstacle to coordination is the multiplicity

of equilibria.
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D Dynamic Investment Model: Estimation

The econometric model we use in Section 4 is:

git =
∑

c∈{LV CM,LC,HC}

βcDi,c +
∑

ρ∈{1,.7,.65,.58,.54}

γρXtDi,ρ + εit. (4)

where gi,t is the investment of subject i in round t that is a function of the complementarity

level (dummy variables Di,c where c ∈ {LV CM,LC,HC} ) and learning is captured by

the interaction of time (Xt =
1
t
) and the specific degree of complementarity, ρ. This model

assumes that, on average and in the long-run, treatments with similar (selfish) Nash equilibria

converge to the same investment level. However, the speed of learning depends on the exact

complementarity degree, ρ. Given that our experiments are not immune to the presence

of session-effects, we cluster standard errors at the session and individual levels, following

Cameron et al. (2011) procedure. Finally, we calculate fitted values of the investments over

time and their respective confidence intervals by

ĝt =β̂LV CM +Xt × γ̂ρ1 , for LVCM

ĝt =β̂LC +Xt [(w2 × γ̂ρ.7) + (w3 × γ̂ρ.65)] , for LC

ĝt =β̂HC +Xt [(w4 × γ̂ρ.58) + (w5 × γ̂ρ.54)] , for HC

where wj are weights based on the number of sessions per treatment. The outcome of

the estimated equation is shown in Table D.2.
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Table D.2
Estimation of Equation 4

DLV CM 0.589

(0.42)

DLC 5.562∗∗∗

(1.67)

DHC 15.197∗∗∗

(1.25)

DLV CM ×Xt 4.325∗∗∗

(1.38)

D.7 ×Xt 0.281

(3.54)

D.65 ×Xt 6.807∗∗

(2.78)

D.58 ×Xt -4.190∗

(2.26)

D.54 ×Xt -2.408

(2.57)

Observations 3,520

R2 0.8107

Note: Clustered standard errors

are in parentheses. *p < 0.1, **p <

0.05, ***p < 0.01
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E Persistence of Conjectures

In Table E.3 we show the total number of conjectures per round. Note that there is a

significant decrease in the percentage of innovations over time, especially in HC treatments.

This suggests that some subjects form conjectures early in the experiment that do not change

much.

Table E.3
Persistence of Conjectures

LVCM LC HC

Round
No. of New Overall No. of New Overall No. of new Overall

Conjectures Conjectures Conjectures Conjectures Conjectures Conjectures

Practice 400 400 782 782 719 719

1 5 38 33 131 20 115

2 4 23 26 100 22 76

3 4 28 22 105 15 62

4 5 18 19 95 11 71

5 5 26 20 86 5 55

6 6 25 16 91 9 41

7 0 8 15 70 2 39

8 2 13 13 72 9 56

9 3 12 10 80 4 35

10 3 6 6 58 3 29

11 5 12 7 65 3 41

12 2 8 5 60 1 21

13 1 5 3 45 2 23

14 0 9 2 42 0 21

15 1 9 5 44 0 19

16 1 5 3 40 3 18

17 0 3 6 49 1 9

18 1 4 3 45 0 17

19 1 4 0 33 0 20

20 0 4 1 31 3 27

F History-Dependent Conjectures

This Appendix provides evidence of history dependence of subjects’ beliefs about others.

We assess the length of the subjects’ memory span by regressing the conjectures about

others’ investments on the actual investments by group partners in the previous five rounds.

Table F.4 reports the results, showing that subjects’ conjectures respond significantly to

investments made by other members in the previous two rounds.
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Table F.4
Response of Subjects’ Conjectures to Others’ Investments(

1
n−1

∑
gρ−i

)1/ρ
1

n−1

∑
g−i

F (g−i,t−1) 0.541∗∗∗ 0.557∗∗∗

(0.05) (0.06)

F (g−i,t−2) 0.209∗∗∗ 0.211∗∗∗

(0.07) (0.07)

F (g−i,t−3) 0.035 0.023

(0.04) (0.04)

F (g−i,t−4) -0.008 -0.009

(0.05) (0.05)

F (g−i,t−5) 0.072∗ 0.067

(0.04) (0.04)

Constant 1.414∗∗∗ 1.358∗∗∗

(0.45) (0.44)

Observations 1,603 1,605

Note: We estimate the following least-squares specification: F (ĝ−i,t) = C +∑5
L=1 ALF

(
g−i,t−L

)
+ ui,t, where ĝ−i,t is a vector of player i’s conjectures about other group

members’ investments in period t, g−i,t−L contains the vector of investments made by other

members in round t − L, C is a common constant, and ui,t is an idiosyncratic error. We let the

function F (· ) be either the arithmetic or the generalized mean of degree ρ. The standard errors

(reported in parentheses) are clustered by individuals and obtained by bootstrap estimations with

1,000 replications. *p < 0.1, **p < 0.05, ***p < 0.01. As a robustness check, we also estimate

this specification including dummy variables to control for different treatments. Results are very

similar.

G Investments by each Subject

The following plots represent the investments made by subjects from rounds 1 to 20. They

also indicate whether subjects utilized the calculator at least once within a period (black

dot) or did not (white dot).

49



0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Subject 1 (Type  1) Subject 2 (Type  1) Subject 3 (Type  1) Subject 4 (Type  1)

Subject 5 (Type  2) Subject 6 (Type  1) Subject 7 (Type  1) Subject 8 (Type  1)

Subject 9 (Type  2) Subject 10 (Type  2) Subject 11 (Type  2) Subject 12 (Type  2)

Subject 13 (Type  2) Subject 14 (Type  2) Subject 15 (Type  1) Subject 16 (Type  2)

Investment Calculator No Calculator

T
o
k
e
n
s

Round

Figure G.2. Session 1 (LVCM)
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Figure G.3. Session 2 (LVCM)
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Figure G.4. Session 3 (ρ = 0.70)
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Figure G.5. Session 4 (ρ = 0.70)

51



0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Subject 1 (Type  1) Subject 2 (Type  2) Subject 3 (Type  1) Subject 4 (Type  2)

Subject 5 (Type  1) Subject 6 (Type  2) Subject 7 (Type  1) Subject 8 (Type  2)

Subject 9 (Type  1) Subject 10 (Type  1) Subject 11 (Type  1) Subject 12 (Type  1)

Subject 13 (Type  1) Subject 14 (Type  1) Subject 15 (Type  2) Subject 16 (Type  1)

Investment Calculator No Calculator

T
o
k
e
n
s

Round

Figure G.6. Session 5 (ρ = 0.65)
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Figure G.7. Session 6 (ρ = 0.65)
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Figure G.8. Session 7 (ρ = 0.58)
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Figure G.9. Session 8 (ρ = 0.58)
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Figure G.10. Session 9 (ρ = 0.54)
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Figure G.11. Session 10 (ρ = 0.54)
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Figure G.12. Session 11 (ρ = 0.54)
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H Calculator Usage and Investments

H.1 Evolution of conjectures: training, early, and later rounds

To examine the role of training we compare the initial conjectures concerning others’ invest-

ments across different treatments. Table H.5 shows the average of the generalized mean of

the conjectures in each treatment. As discussed in the Introduction and Section 3.2, and

analyzed extensively in Section 5, we did not elicit beliefs. Instead, we collected data on

the inputs subjects entered in the payoff calculator. We use conjectures about group mem-

bers’ investments to describe beliefs about others. The first column (Practice) of Table H.5

shows that conjectures made during the practice period, before the experiment started, do

not differ on average across treatments, as subjects are still learning about the payoff space.

However, starting from round 1 (column 2) growing differences emerge across treatments.

These difference reflect the evolution of investments that appears in Figure 3.

Table H.5
Average Conjecture About Others’ Investments

Treatment Practice Round 1 Round 2 Round 5 Round ≥ 10
(1) (2) (3) (4) (5)

LVCM 9.16 6.61 5.24 3.66 2.98
(0.33) (0.85) (0.77) (1.01) (0.85)

LC
9.17 9.33 8.26 5.97 5.75
(0.37) (0.87) (1.19) (0.81) (0.90)

HC
9.03 10.76 10.53 13.10 12.60
(0.36) (0.71) (1.56) (1.69) (1.65)

No. of conjectures 5,213 357 249 204 961

Note: Each cell reports the average value for the generalized mean of the conjectures
of others’ investments (standard errors are reported in parentheses). Standard errors
are clustered at the individual and session level, as in 4.

H.2 Investments of calculator users and non-users

Table H.6 displays the distribution of types for subjects that activated the calculator at least

once from rounds 16 to 20 and subjects that did not.

Figure H.13 shows the distribution of investments (hypothetical and actual) by the degree

of complementarity and calculator activation (users/non-users) during the last five rounds.

Each sub-figure depicts (separately) Type 1 and Type 2 subjects, as well as pecuniary best-

response to investments.
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Table H.6
Distribution of Types by Calculator Usage

Type
Treatment Group

TotalLVCM LC HC
Calc No Calc Calc No Calc Calc No Calc

1 2 15 24 15 20 34 114
2 4 11 17 8 8 16 60

Total 6 26 41 23 28 50 174
Note: Each cell reports the number of subjects that activated the calculator (Calc) and
the number of those who did not activate the calculator (No Calc) in rounds 16-20 by
treatment group and type.
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Figure H.13. CDF of Actual and Hypothetical Investments by Type and Calculator Activation (Rounds 16-20).
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I Hypothetical Investments and Loss Indices

In this section we describe the procedures employed to recover the Cumulative Distribution

Functions (CDF) of hypothetical investments and generate histograms for the Hypothetical

Loss Index and the Behavioral Loss Index.

I.1 CDF of Hypothetical Investments

1. Consider all conjectures entered in the calculator by all subjects in all rounds. Each

conjecture ĝ−i = (ĝ2, ĝ3, ĝ4) is a triplet of values (one for each of the members in a

subject’s group). For each conjecture, we compute the generalized mean Mρ (ĝ−i) =(
ĝρ2+ĝρ3+ĝρ4

3

) 1
ρ
.

2. We partition the set of generalized means from step 1 into separate intervals (the in-

tervals are shown in Table I.7), depending on how the pecuniary best-response changes

as a function of Mρ (ĝ−i) .

3. With slight abuse of notation, we use all entries the subjects made into the “hypo-

thetical investment” field of the calculator, from all rounds, to identify the one that

maximizes the pecuniary payoff within each of the intervals (defined in step 2) contain-

ing her conjectures. As each interval corresponds to a set of conjectures that result in

approximately the same pecuniary-optimal investment, the hypothetical investment is

the value that generates the highest pecuniary return among all investments considered

in that interval. We use all rounds because some subjects may identify the investment

that maximizes their pecuniary payoff, given their conjectures, in early rounds.

4. When observing the hypothetical investments within each interval, it is important to

recognize that some subjects enter only few conjectures while others enter many. To

account for this heterogeneity in calculator usage, we weight the hypothetical invest-

ments in each interval. For example, suppose that subject x and subject y participate

in the same session. Suppose also that there are only two intervals: 1 and 2. Subject

x has a single conjecture (say, in interval 1), while subject y enters two conjectures

(one in each interval). Then, the hypothetical investment of subject x in interval 1

is assigned twice the weight as that of subject y. Therefore, the weights of the hy-

pothetical investments of subjects x and y in interval 1 are 2/3 and 1/3, respectively.

This avoids a scenario in which participants who enter many conjectures contribute

a disproportionately large amount of information to the distribution of hypothetical

investments.
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5. Given weights from step 4, we recover a cumulative distribution function of hypothetical

investments for each type (t), session (s) and interval.

6. To assign higher weights to hypothetical investments that are relevant in the last five

rounds, we re-weight them using the actual investments in rounds 16 to 20, as described

in steps 7-9 below.

7. From the empirical distribution of investments, we draw 1,000 triplets at the session

level (we draw only from rounds 16 to 20, i.e. the last five), denoted by g−i,s =

(g2, g3, g4). For each triplet g−i,s we calculate the generalized mean, Mρ (g−i,s) =(
gρ2+gρ3+gρ4

3

) 1
ρ
.

8. For each session, we partition the set of generalized means (obtained in step 7) into

separate intervals (the intervals are shown in Table I.7). Then, we assign a frequency

value to each interval based on the share of the generalized means contained within it.

This accounts for the fact that some intervals are more frequent than others.

9. We take the distributions of hypothetical investments computed in step 5 (one for each

type, session and interval). Fixing session and type, we calculate the distribution of

hypothetical investments over the whole range of generalized means as the mixture

of interval-specific distributions of hypothetical investments, weighted by the relative

frequencies of observations within each interval (obtained in Step 8). This results in

a CDF of hypothetical investments (one such distribution for each session and type),

which we denote by ĝt,s.

10. To calculate the CDF at the treatment level (like the ones shown in Figure 5), one must

combine the CDF of the sessions within each treatment. This is done by calculating

their simple average. Specifically, for each probability value in the CDFs, we take the

average over the hypothetical investments associated with such value. For example,

suppose that there are two sessions in a given treatment. In the first one, 50 percent

of the hypothetical investments are lower than or equal to 10 tokens. While in the

second one, 50 percent of the hypothetical investments are lower than or equal to 18

tokens. In the combined CDF, 50 percent of the hypothetical investments would be

lower than or equal to 14 tokens.
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I.2 Computation of “Hypothetical Loss Index” and “Behavioral

Loss Index”

1. For each subject type t and experiment session s, we randomly draw 1,000 values from

the empirical distribution of actual investments (we draw from rounds 16 to 20, i.e. the

last five). We denote an element of this set of draws as gm,t,s, where m ∈ {1, . . . , 1000}
is a draw, t denotes type and s is the session.

2. Using the pooled distribution of investments (pooling together Type 1 and Type 2),

we draw 1,000 triplets (conditioning at the session level; for rounds 16 to 20). We call

the elements of this set g−i,s, where i ∈ {1, . . . , 1000} is a triplet draw, and s is the

session.

3. Denote the pecuniary best-response to each g−i,s by g∗(g−i,s).

4. We randomly draw 1,000 values from the CDF of hypothetical investments of each

session s and type t (these distributions are generated using the procedures described

in subsection I.1). We denote each element of this set as ĝm,t,s, wherem ∈ {1, . . . , 1000}
is a hypothetical investment draw.

5. To each element gm,t,s from step 1 (i.e. for each draw m of type t and session s) we

randomly assign a hypothetical investment draw ĝm,t,s from step 4. Then, for each

such pair (gm,t,s, ĝm,t,s) we randomly assign an element g−i,s from step 2 (i.e. a triplet

−i from session s). This is done separately for each session.

6. Using the values (gm,t,s, ĝm,t,s, g−i,s) from step 5, we can then compute pecuniary payoff

functions π (ĝm,t,s, g−i,s) , π (g∗(g−i,s), g−i,s) and π (gm,t,s, g−i,s).

7. Steps 5 and 6 allow us to decompose the monetary loss (due to the discrepancy between

actual investment and best-response) into two complementary elements: (i) the loss

due to deviation of hypothetical investment from best-response; and (ii) the loss due

to deviation of actual investment from hypothetical investment.

8. We compute the Hypothetical Loss Index and the Behavioral Loss Index as follows:

(a) Hypothetical Loss Index =
π(ĝm,t,s,g−i,s)−π(g∗(g−i,s),g−i,s)

π(g∗(g−i,s),g−i,s)
× 100

(b) Behavioral Loss Index =
π(gm,t,s,g−i,s)−π(ĝm,t,s,g−i,s)

π(g∗(g−i,s),g−i,s)
× 100

9. This results in 1,000 such measures for each session s. We use these measures to

characterize the distribution of pecuniary losses in the population.
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Table I.7
Intervals for the Generalized Mean of Investments

Intervals [0,2.5] [2.5,5) [5,7.5) [7.5,10) [10,12.5) [12.5,15) [15,17.5) [17.5,20]

ρ = 1 1 1 1 1 2 2 2 2
ρ = 0.70 1 2 3 4 5 6 7 8
ρ = 0.65 1 2 3 4 5 6 7 8
ρ = 0.58 1 2 3 4 5 6 7 7
ρ = 0.54 1 2 3 4 5 5 5 5

Note: Elements of partition for each ρ are identified by the same number. For example, for
ρ = 0.54 there are 5 elements in the partition since for Mρ (ĝ−i) ≥ 10 the pecuniary best
response is 20.

I.3 Tests to Compare Cumulative Distribution Functions

Because the CDFs are mixtures of different values of ρ, one cannot use standard non-

parametric tests to compare them. Instead, we draw 1,000 random samples from the cor-

responding CDFs. We then implement a rank-sum test under the null hypothesis that the

distributions are identical between each pair of samples. The sample size is based on the

number of observations in each session. For example, for the distribution of investments in

session s, the sample size is 80 (16 subjects × 5 rounds).

I.3.1 Actual Investments vs Conjectures by Type

The null hypothesis is that conjectures are coherent (for example, conjectures of Type 1 in

LC are distributed similarly to investments in LC). In LC, we cannot reject the null (at a

95% confidence level) for Type 1 in 96.2 percent of the tests. For Type 2 we fail to reject in

75.9 percent of the tests. In HC, we fail to reject the coherence of conjectures in 91.2 percent

of the tests for Type 1 (90.6 percent for Type 2).

I.3.2 Actual Investments by Type

When we test whether the distributions of investments of different types are equal (separately

done in LC and HC treatments), we always reject the null hypothesis (at a 95% confidence

level).

I.3.3 Hypothetical Investments by Type

When we consider the null hypothesis that the distributions of hypothetical investments of

different types (Type 1 vs Type 2) are identical, we cannot reject the null in LC treatments

61



(at a 95% confidence level) in 93.8 percent of the tests. For HC, we fail to reject in 40.3

percent of the tests.

I.3.4 Hypothetical Investments vs Actual Investments by Type

The null hypothesis is that the distributions of hypothetical and actual investments are

identical for each type. For Type 1, we cannot reject the null (at a 95% confidence level) in

86.8 percent of the tests in LC, and for 68 percent of the tests in HC. For Type 2, we always

reject the null (at a 95% confidence level) in both LC and HC.
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J Computer Interface

Figure J.14. Main computer interface

Figure J.15. Feedback
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K Control Questions

Figure K.16. Control question 1/7

Figure K.17. Control question 2/7
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Figure K.18. Control question 3/7

Figure K.19. Control question 4/7
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Figure K.20. Control question 5/7

Figure K.21. Control question 6/7
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Figure K.22. Control question 7/7
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L Instructions

The instructions distributed to subjects in all the treatments are reproduced on the

following pages. All subjects received the same set of instructions except that those

in the LVCM treatment received the following explanation about how the income

from the group account was calculated:

The total group income depends on the investments of all group mem-

bers, and it is shared equally among all group members. This means that

each group member receives one quarter (1/4) of the total group income.

Some important points to keep in mind:

a. The more you and others invest in the group account, the higher the

total group income.

b. The group income is obtained by multiplying the sum of the invest-

ments of all group members by 1.6 (remember that the resulting group

income is shared equally among group members).

The exchange rate was adjusted so that the monetary payoff in the Pareto efficient

outcome was the same across all treatments.
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Instructions 

You are taking part in an economic experiment in which you will be able to earn money. Your earnings 

depend on your decisions and on the decisions of the other participants with whom you will interact.  It 

is therefore important to read these instructions with attention. You are not allowed to communicate 

with the other participants during the experiment.  

All the transactions during the experiment and your entire earnings will be calculated in terms of tokens. 

At the end of the experiment, the total amount of tokens you have earned during this session will be 

converted to CAD and paid to you in cash according to the following rules:  

1. The game will be played for 20 rounds. At the end of the experiment, the computer will randomly 

select one of your decision rounds for payment. That is, there is an equal chance that any decision you 

make during the experiment will be the decision that counts for payment.  

2. The amount of tokens you get in the randomly selected round will be converted into CAD at the rate: 

2 tokens = $1. 

3. You will get $0.20 for every control question you answer correctly in the first attempt; $0.15 for every 

question you answer correctly in the second attempt; and $0.10 for every question you answer correctly 

in the third attempt. 

4. In addition, you will get a show-up fee of $5. 

Introduction  

This experiment is divided into different rounds. There will be 20 rounds in total. In each round you will 

obtain some income in tokens. The more tokens you get, the more money you will be paid at the end of 

the experiment. 

During all 20 rounds the participants are divided into groups of four. Therefore, you will be in a group 

with 3 other participants. The composition of the groups will change every round.  You will meet each 

of the participants only four times, in randomly chosen rounds. However, each time you are matched 

with a participant that you encountered before, the other group members will be different. This means 

that the group composition will never be identical in any two rounds. Moreover, you will never be 

informed of the identity of the other group members.  

Description of the rounds  

At the beginning of the rounds each participant in your group receives 20 tokens. We will refer to these 

tokens as the initial endowment. Your only decision will be on how to use your initial endowment. You 

will have to choose how many tokens you want to invest in a group account and how many of them 
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you'll want keep for yourself in a private account. You can invest any amount of your initial endowment 

in the group account. 

The decision on how many tokens to invest is up to you. Each other group member will also make such a 

decision. All decisions are made simultaneously. That is, nobody will be informed about the decision of 

the other group members before everyone made his or her decision.  

End of the rounds 

At the end of each round (after all choices are submitted), you will see:  (i) your investment choice, (ii) 

the investment choices of the other members in your group, and (iii) your income. Then, next round 

starts automatically and you will receive a new endowment of 20 tokens.  

Income calculation 

Each round, your total earnings will be calculated by adding up the income from your private account 

and the income from the group account: 

1. Income from your private account. You will earn 1 token for every token you keep in you private 

account. If for example, you keep 10 tokens in your private account your income will be 10 tokens. 

2. Income from the group account. The total group income depends on the investments of all group 

members, and it is shared equally among all of them. That is, each group member receives one quarter 

(1/4) of the total group income. 

Some important points to keep in mind: 

a. The more you and others invest, the higher the total group income.  

b. Taking as given the investments of all other group members, consider two levels for your 

investment in the group account (say, low investment and high investment). Next, increase both 

the low investment and the high investment by 1 token. The total group income will increase in 

both cases. However, the increase is smaller in the case of the higher investment level. 

c. When you increase your investment in the group account, the total income will not increase at a 

constant rate. The rate depends on the value of all participants’ investments in the group 

account. 

d. For the same average investment in the group account, the total group income would be higher 

if there is not much difference between the investments chosen by each one of the group 

members.  

e. If all other members in your group invest zero, the total group income will be determined by 

multiplying your investment in the group account by 1.6; the resulting amount is the group 

income and it will be shared equally among all group members.  
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Using the calculator to compute your income 

To calculate your potential income you will have access to a calculator (look at the picture below). 

To activate the calculator, you will be asked to fill in a hypothetical value for your own investment and 

for the other group members’ investment; then, you will be able to visualize your income for such 

hypothetical investment choices. You can consider as many hypothetical investment combinations as 

you want. 

Before the experiment starts you'll understand how to use the calculator; you will be able to practice 

with it; and finally, you will have to answer some control questions. For every correct answer you will 

get $0.20, $0.15, $0.10 if you give the correct answer in the first, second and third attempt, respectively.  

Remember that your actual investment decision has to be entered on the right hand side of the 

screen. Every round you will have 95 seconds to do that. 

 

Screen-shot of the experiment interface 
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