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Abstract

This paper introduces a theoretical model of decision making in which
preferences are defined on both Savage subjective acts and compound objec-
tive lotteries. Preferences are two-stage probabilistically sophisticated when
the ranking of acts corresponds to the ranking of the respective compound
lotteries induced by the acts through the decision maker’s subjective belief.
This family of preferences includes various theoretical models proposed in
the literature to accommodate non-neutral attitude towards ambiguity. The
principle of calibration relates preferences over acts and compound objec-
tive lotteries, and provides a foundation for the tight empirical association
between probabilistic sophistication and reduction of compound lotteries for
all two-stage probabilistically sophisticated preferences.
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1 Introduction

One of the most important theoretical implications of the standard model of
decision-making under uncertainty, is the possibility to reduce uncertainty
to risk. Savage’s theory of subjective expected utility distilled early ideas of
Ramsey and de Finetti to provide testable behavioral axioms, which allow
a modeler to derive subjective probabilities from preferences over acts. The
theory implies that the information about the likelihood of events matters
only to the extent that it affects the decision maker’s subjective probability
assessments, and does not leave any room for the decision maker’s confidence
in those probabilistic assessments. This result was further generalized by
Machina and Schmeidler [33, 34] by relaxing the expected utility component,
and focusing on the probabilistic sophistication component of behavior.

Ellsberg’s [15] thought experiments challenged this conclusion: in a se-
ries of ingenious and intuitive experiments he showed that decision makers’
confidence in the likelihood of events, or as it is often called the degree of
ambiguity, plays a fundamental role in determining their choices. One way
to summarize his results is that “there are uncertainties that are not risks”
[15]. Following this line of thought several axiomatic models that generalize
subjective expected utility have been proposed. They all have in common a
primitive distinction between uncertainty and risk.

During the years since Ellsberg’s paper, several researchers have ques-
tioned this accepted distinction between risk and uncertainty as the one un-
derlying ambiguity aversion. Smith [43] was the first to conjecture that most
decision makers who are ambiguity averse in Ellsberg’s examples, would pre-
fer a simple one-stage lottery to a compound objective lottery. If this would
be the case, he wrote, we should ask “are there risks that are not risks?”
[43]. Kahneman and Tversky [27] (in an early draft of their Prospect Theory
contribution) conjectured that understanding of the Ellsberg paradox relies
on decision makers’ preferences being defined over higher-order risks. Segal
[40, 41] showed that if a decision maker views the Ellsberg urn as a com-
pound lottery, and uses non-expected utility (in which she does not multiply
probabilities according to the laws of probability) then behavior consistent
with ambiguity aversion may result. Robson [36] and Halevy and Feltkamp
[26] provide an evolutionary and behavioral rationals for uncertainty aversion
that rely on a perception of an ambiguous lottery as composed of positively
correlated risks, with higher-order uncertainty.

Modern experimental literature provides support for this perspective.

2



Halevy [25] establishes a direct empirical link between decision makers’ choices
over objective compound lotteries and their attitudes towards ambiguity. A
decision maker is said to satisfy the reduction of compound lotteries (ROCL)
if her preferences depend only on the probabilities of final outcomes, which
she calculates by multiplying probabilities according to the laws of probabil-
ity. Halevy reports that decision makers who reduce compound objective lot-
teries are found to be neutral to ambiguity. That is, they reduce uncertainty
to risk. Furthermore, decision makers whose preferences over compound lot-
teries do not abide by the reduction axiom, have attitude towards ambiguity
that is generally consistent with a view of the ambiguous lottery as a com-
pound lottery. Halevy’s finding were replicated, strengethed and generalized
by Chew, Miao and Zhong [9], Gillen et al [22], Dean and Ortoleva [12], and
have been shown to persist in a representative sample of the US population
(Chapman et al [8]).1 The experimental association between ROCL and atti-
tude to ambiguity suggests that in order to behaviorally understand attitude
to ambiguity, we must link the DM’s preferences over these two domains:
compound lotteries and acts (i.e., mappings from states of nature to out-
comes). This is in contrast to the standard approach in the literature which
focuses only on the DM’s preferences over acts to derive representations of
ambiguity averse behavior.2

In order to model and gain insight into the empirical link between ROCL
and ambiguity aversion, we extend the domain of the DM’s preferences to
include the union of compound lotteries and Savage-acts. This extended
domain is just sufficient for our purposes, since if we fix a set of probability
measures over the state space, and consider a probability distribution over
the measures in this set, each act induces a compound lottery. The induced
compound lottery is constructed by first converting the act into a simple
lottery with respect to each measure in the set, and then assigning to each
such lottery the probability associated with the corresponding distribution.

We present a novel property of preferences called Two-Stage Probabilistic

1Abdellaoui et al [1] document that among graduate French engineers the association
is not as tight as found in other studies.

2Evren [20], like Machina and Schmeidler [34], takes the union of preferences over acts
and simple lotteries as primitive. Restricting attention to recursive preferences as in Segal
[40], he identifies ambiguity aversion over acts with a property similar to Dillenberger’s
[14] preference for one-shot resolution of uncertainty and shows its relation to negative
certainty independence axiom [14]. Since the primitives do not include compound lotteries,
the paper is silent about two-stage probabilistic sophistication.
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Sophistication (2SPS). A decision maker’s preferences satisfy 2SPS if there
exists a set of probability measures over the state space (given objectively
from the structure of the act), and a fixed subjective probability measure
over the measures in this set (representing the DM’s belief over the mea-
sures), such that the DM is indifferent between acts that induce the same
compound lottery. That is, a DM who satisfies 2SPS reduces all uncertainty
to compound risk. A DM who reduces all uncertainty to simple risk is Proba-
bilistically Sophisticated (Machina and Schmeidler [33]), which is frequently
used as a benchmark for ambiguity neutrality (Epstein [16]). 2SPS general-
izes probabilistic sophistication, and allows for behavior that is non-neutral
with respect to ambiguity, without restricting the utility function used to
evaluate each stage of the compound lottery.

We show that 2SPS is a consequence of two new behavioral axioms called
Calibration and First-Stage Probabilistic Beliefs. These axioms are very
much in the spirit of Ramsey and de Finetti who used simple lotteries in order
to calibrate the decision maker’s subjective beliefs. Sarin and Wakker [38]
used the calibration approach in order to provide foundations for subjective
expected utility by calibrating Savage acts to one-stage lotteries. We use a
similar methodology by calibrating Savage acts to compound lotteries. We
show that if, in addition to Calibration and First-Stage Probabilistic Beliefs,
preferences satisfy ROCL then they must be Probabilistically Sophisticated,
and thus can not display ambiguity averse behavior. This result establishes
the formal link between ROCL and ambiguity neutrality.

An equivalent statement of the result is that non-neutral attitude to am-
biguity implies violation of ROCL. From a normative perspective, some may
view the latter as a “mistake” and the former as “rational” choice behavior.
Empirical evidence (as in [25, 9]) suggests that not only ROCL fails, but also
that the ambiguity attitude of decision makers is closely associated to the
form in which it fails. Our approach is consistent with this empirical evi-
dence. Moreover, we do not consider calibrating the choices in the subjective
and the objective domains as necessarily contradicting the above normative
view. To the contrary, the normative foundations for ambiguity aversion may
shed light on why and how decision makers violate reduction.

As a by-product, our work also provides a methodology for obtaining
straightforward foundations for several representations that have been pro-
posed in the literature. Calibration and First-Stage Probabilistic Beliefs al-
low to translate the structure imposed on preferences over compound lotteries
to preferences over subjective acts. Using this method we provide alternative
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foundations for the recursive expected utility (REU) model (Klibanoff, Mari-
nacci and Mukerji [29], Nau [35], Ergin and Gul [19], Ahn [3], Seo [42], Denti
and Pomatto [13]), and can provide similar foundations for the recursive non-
expected utility (RNEU) model.3 Our axioms are simple to understand and
are based entirely on observable choices. They are not constrained to one
functional form, and are therefore consistent with the empirical evidence re-
ported in Halevy [25] and Chew et al [9] of non-uniform association between
preferences over compound lotteries and attitudes to ambiguity.

Finally, we present a thought experiment, in the spirit of Ellsberg’s (also
Epstein [17] and Epstein and Halevy [18]), of a preference relation that is
not two-stage probabilistically sophisticated. Beyond demonstrating that the
property of 2SPS is refutable, it suggests that the current models of ambiguity
might lack the necessary hierarchical structure, that will allow one to capture
ambiguity at an arbitrary level.

2 Framework

Let C be an arbitrary set of consequences (prizes). L1 is the set of all sim-
ple objective lotteries. Elements of L1 are denoted by X, Y, etc. A simple
lottery that yields xj ∈ C with probability qj for j = 1, 2, ...,m is denoted
by (x1, q1; . . . ;xm, qm) . L2 is the set of all compound objective lotteries. El-
ements of L2 are denoted by L1, L2, etc. A compound lottery that yields
the simple lottery Xj with probability pj for j = 1, 2, ..., n is denoted by
(X1, p1; . . . ;Xn, pn) . Simple lotteries can be associated with two subsets of
compound lotteries. The first is the set of compound lotteries that are de-
generate in the first stage. We refer to this set as ∆ ≡ {(X, 1) : X ∈ L1} .
The second is the set of compound lotteries that are degenerate in the second
stage. We refer to this set as
Γ ≡ {((x1, 1) , p1; ...; (xn, 1) , pn) : X = (x1, p1; . . . ;xn, pn) ∈ L1} . For X ∈ L1

the elements of ∆ and Γ that correspond to a given simple lottery X are
denoted by δX and γX respectively.

Denote by Ω the (finite) state space, and by Σ the set of events. ∆ (Ω)
is the set of probability measures on (Ω,Σ) , and ∆ (∆ (Ω)) is the set of all
probability measures with finite support on ∆ (Ω) .

3Klibanoff and Ozdenoren [30] provide foundation of for recursive expected utility
model which allows for timing for resolution of uncertainty but not ambiguity.
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An act is a function f : Ω → C, measurable with respect to Σ and
assumed to have finite range. Denote by F the set of all acts. Given a
partition {S1, ..., Sm} of Ω, an act that yields xi ∈ C on event Si is denoted
by (x1, S1; ...;xm, Sm) .

The set of all gambles is given by G = F∪L2. Let % be a binary relation
on G. This is the minimal domain in which the decision maker can con-
ceivably compare compound lotteries and acts. One can imagine a larger
domain (as in Anscombe and Aumann’s [4] original work) where preferences
are defined over roulette-lotteries on horse-race acts, whose outcomes are
roulette-lotteries (this domain is used by Seo [42]). Naturally, axioms in this
domain are stronger, it includes objects that are not part of most standard
choice problems. Hence, the behavioral implication of axioms there may not
be transparent.4 We chose a minimal domain, where the axioms’ behavioral
implication are easily verifiable.
We make two preliminary assumptions over the binary relation % .

Axiom 1 (Weak Order) % on G is complete and transitive.

Though Weak Order is a standard axiom, note that in this framework it
requires the decision maker (DM) to compare compound lotteries and acts.
The following axiom requires that the DM is indifferent between a degenerate
compound lottery that gives with probability one the lottery in which the
outcome x is received with probability one and a degenerate act that gives x
in every state.

Axiom 2 (Degenerate Lottery/Act Equivalence) For every x ∈ C, δ(x,1) ∼
(x,Ω) .

Using the previous axiom sometimes we write x � y where x and y may
refer to either degenerate compound lotteries or degenerate acts. To rule out
the trivial cases, assume that there exist two prizes x∗, x∗ such that x∗ � x∗.

3 Preferences over Compound Lotteries

This subsection presents axioms only on compound (two-stage) objective
lotteries (L2).

4Abdellaoui and Zank [2] provide foundations for rank-dependent preferences without
relying on the independence axiom within the Anscombe-Aumann [4] framework.
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The first axiom requires that there exists a function that represents the DM’s
preferences over compound lotteries5.

Axiom 3 (Representation over compound lotteries) There exists W : L2 →
R that represents % over compound lotteries.

Generalizing monotonicity of preferences with respect to first order stochas-
tic dominance to compound lotteries is not transparent, and is required to
state our main result below. We employ a definition suggested by Segal [41]
that generalizes the standard definition of first-order stochastic dominance.

Definition 1 Let L1 = (X1, p1; . . . ;Xn, pn) and L2 = (Y1, q1; . . . ;Y`, q`) be
two compound lotteries. L1 (strictly) dominates L2 by two-stage stochastic
dominance if and only if for every V : L1 → R which is strictly increas-
ing with respect to first-order stochastic dominance,

∑n
i=1 piV (Xi) (>) ≥∑`

i=1 qiV (Yi) .

The following axiom requires monotonicity of preferences over compound
lotteries with respect to two-stage stochastic dominance.

Axiom 4 (Two-stage Stochastic Dominance) If the compound lottery L1

(strictly) dominates the compound lottery L2 by two-stage stochastic dom-
inance then L1 (�) � L2.

The distinction between two-stage and one-stage lotteries disappears if
we assume that DMs care only about the ultimate probabilities of obtaining
various prizes. The following axiom (Segal, [41]) formalizes this:

Axiom 5 (Reduction of Compound Lotteries) Let Xi =
(
xi1, q

i
1; ...;ximi

, qimi

)
for i = 1, ..., n and L = (X1, p1; ...;Xn, pn) . Define

R (L) =
(
x1

1, p1q
1
1; ...;x1

m1
, p1q

1
m1

; ...;xn1 , pnq
n
1 ; ...;xnmn

, pnq
n
mn

)
.

Then L ∼ δR(L) = (R (L) , 1) .

5Representation over compound lotteries can be derived by adding appropriate conti-
nuity axiom to the weak order axiom.
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If the DM satisfies the Reduction of Compound Lotteries Axiom (ROCL),
then she multiplies probabilities of final outcomes according to the laws of
probability and is indifferent between any compound lottery and the result-
ing one stage lottery.6,7 Note that ROCL is a property of preferences over
compound lotteries, and by itself does not restrict preferences over Savage
acts. Experimentally, however, we know that there is a strong connection
between ROCL and ambiguity neutrality – a property of preferences over
acts. We pursue this connection in Section 5.

4 Preferences over Acts: Two-Stage Proba-

bilistic Sophistication

In Savage’s theory of Subjective Expected Utility [39] the evaluation of an
act can be decomposed into two components. The DM holds beliefs over the
state space and converts any act into a lottery over outcomes using this belief.
This lottery is then evaluated according to expected utility. Machina and
Schmeidler [33, 34] generalized Savage’s theory by characterizing preferences
over acts where the first component is retained (that is, the DM converts acts
to lotteries using a consistent belief), but does not necessarily evaluate the
resulting lotteries according to expected utility. These preferences, referred to
as probabilistically sophisticated, achieve separation of beliefs from utilities
without imposing the additional requirements of expected utility. Next, we
present the formal definition of probabilistic sophistication.

Definition 2 Let ν ∈ ∆ (Ω) . Denote by Φν,f the lottery induced by the act
f = (x1, S1; ...;Xm, Sm) through the measure ν:
Φν,f = (x1, ν (S1) ; ...;xm, ν (Sm)). % on acts is probabilistically sophisticated

if there exists a probability measure ν ∈ ∆ (Ω) and a functional Ṽ : ∆ (X )→
R increasing with respect to first-order stochastic dominance such that

f % g ⇔ Ṽ (Φν,f ) ≥ Ṽ (Φν,g)

6Strictly speaking, preferences are defined only on compound lotteries. There are two
distinct subsets of compound lotteries which naturally correspond to one-stage lotteries,
∆,Γ ⊂ L2. It does not matter which one of these sets is used in stating ROCL, since
L ∼ δR(L) for all L⇔ L ∼ γR(L) for all L.

7Letsou, Naeh and Segal [32] present an application where violation of reduction can
explain individuals’ preference among selection criteria.
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where Φν,f ,Φν,g ∈ ∆ (X ) are probability distributions induced from f and g
through the measure ν.

Probabilistically sophisticated preferences defined above rule out aversion
to uncertainty (or ambiguity) as observed in Ellsberg type experiments8. An-
other perspective on probabilistic sophistication is that it reduces uncertainty
to one-stage risk, ruling out ambiguity aversion (Epstein, [16]). Note that
Machina and Schmeidler [33] do not include in their domain objective lotter-

ies. Hence, it is conceivable that the decision maker uses Ṽ (·) to evaluate the
lottery induced by an act, but a different V (·) to evaluate objective lotteries.
This possible distinction disappears in Machina and Schmeidler’s later work
[34], which derives probabilistic sophisticated preferences in an Anscombe-

Aumann domain that includes objective lotteries, as Ṽ (·) coincides with
V (·).9

A more general class of preferences that reduce uncertainty to compound
risk can accommodate non-neutral attitudes towards ambiguity in a natural
way.

Definition 3 Let µ ∈ ∆ (∆ (Ω)) , that is - there are ν1, ..., νn ∈ ∆ (Ω) such
that µ (νj) > 0 and

∑n
j=1 µ (νj) = 1. Denote by Ψµ,f the compound lottery

induced by the act f = (x1, S1; ...;Xm, Sm) through µ:
Ψµ,f = (X1, µ (ν1) ; ...;Xn, µ (νn)) where Xj = (x1, νj (S1) ; ...;xm, νj (Sm)). %
on acts satisfies Two-Stage Probabilistic Sophistication (2SPS) if there exists

a probability measure µ ∈ ∆ (∆ (Ω)) and a functional W̃ : ∆ (∆ (X )) → R
increasing with respect to two-stage stochastic dominance such that

f % g ⇔ W̃ (Ψµ,f ) ≥ W̃ (Ψµ,g)

where Ψµ,f ,Ψµ,g ∈ ∆ (∆ (X )) are compound lotteries induced from the acts
f and g through µ.

8Monotonicity with respect to first-order stochastic dominance is required for the typi-
cal behavior in Ellsberg to contradict the existence of probabilistically sophisticated belief.
There exist definitions of probabilistic sophisticated preferences that do not require this
monotonicity (Grant [23], Chew and Sagi [10]), but since our interest stems from studying
ambiguity averse decision makers, and monotonicity is a normatively mild assumption, we
retain it throughout.

9It is our impression that even in their 1992 paper, Machina and Schmeidler [33] in-
tended that the utility function used to evaluate the lottery induced by an act coin-
cides with the utility function used to evaluate objective lotteries. Otherwise, they would
not have motivated their representation as capable to accommodate Allais type behavior
(which is in the domain of objective lotteries).
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A decision maker’s preferences satisfy 2SPS if every Savage-act induces
a compound lottery through µ, such that the ranking of acts corresponds to
the ranking of the compound lotteries induced by those acts using a utility
function W̃ (·). Furthermore, although formally not part of our definition of
2SPS, in actual choice problems a modeler would consider only the first-stage
lotteries that are consistent with the objective description of the state space.

If preferences over acts are represented by either the Recursive Expected
Utility (REU) or Recursive Non-Expected Utility (RNEU) models then they
are 2SPS. To clarify this point consider first REU.10 In this model

W̃ (Ψµ,f ) = Eµφ
(
Eνj

(
u2 (f)

))
=

n∑
j=1

u1

(
CE

(
m∑
i=1

u2 (f (si)) νj (si)

))
µ (νj) (1)

where ur : C → R (r = 1, 2) is increasing with respect to preferences over
outcomes, φ = u1 ◦ (u2)

−1
and CE denotes the certainty equivalent with

respect to u2.
In the Recursive Non-Expected Utility model (Segal [40]) W̃ (Ψµ,f ) can

be written as follows. Let Υµ,f be a lottery that gives CE
(
V
(
Φνj ,f

))
with

probability µ (νj) where CE denotes the certainty equivalent with respect
to V and V : L1 → R is increasing with respect to first-order stochastic
dominance. Then,

W̃ (Ψµ,f ) = V (Υµ,f ) (2)

Preferences that can be represented by (1) and (2) are both increasing with
respect to two-stage stochastic dominance and thus they are both 2SPS.11

To describe the Maxmin Expected Utility (MEU) model (Gilboa and
Schmeidler [21], Casadesus-Masanell, Klibanoff and Ozdenoren [6]) consider

W̃ (Ψµ,f ) = min
ν∈co(supp(µ))

m∑
i=1

u (f (si)) ν (si) (3)

However, this representation is not strictly increasing with respect to two-
stage stochastic dominance. This is because if we improve (in the sense of
first order stochastic dominance) a second stage lottery that does not receive

the minimum expected utility, then the value of W̃ does not change.

10The REU functional form has been axiomatized by Klibanoff et al [29], Ergin and Gul
[19], Nau [35] and Seo [42]. In each case, the domain of preferences includes simple acts
but includes other choice objects (that varies across different representations.)

11If u1 ≡ u2 then REU reduces to SEU. If V is linear in probabilities then RNEU reduces
to SEU.
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As in the definition of Probabilistic Sophistication, one can conceivably
imagine that the decision maker uses W̃ (·) to evaluate the compound lot-
tery induced by the acts, while using a different W (·) to evaluate compound
lotteries. Indeed, this is the interpretation taken by previous work that main-
tained the traditional distinction between risk and uncertainty, even when
applied to reduction of compound lotteries. For example, Klibanoff et al ’s
[29] preferred interpretation is that reduction of compound lotteries holds for

W (·) , but fails for W̃ (·). Our axioms below, as in Machina and Schmeidler
[34], impose restrictions on the relation between the two functions.

5 Calibration

The following two axioms establish the essential connection between pref-
erences over compound objective lotteries and acts, which is the focus of
this study. The relation over these two domains was established experi-
mentally by in several independent studies following Halevy [25], and the
current paper provides its theoretical foundation. The connection between
the two domains of preferences, acts and compound lotteries is made through
two related calibration axiom. Axiom 6 (Calibration) makes the connection
between subjective bets and compound lotteries where the second stage con-
sists of objective bets. Axiom 7 (First-Stage Probabilistic Beliefs) extends
the calibration to arbitrary acts.

Axiom 6 (Calibration) There exists a strictly positive probability measure
p = (p1, . . . , pn) such that for all disjoint events S and S ′, there exist com-
pound lotteries (X1, p1; . . . ;Xn, pn) and (X ′1, p1; . . . ;X ′n, pn) with

(x∗, S;x∗, S
c) ∼ (X1, p1; . . . ;Xn, pn) ,

(x∗, S ′;x∗, S
′c) ∼ (X ′1, p1; . . . ;X ′n, pn)

where Xj = (x∗, qj;x∗, (1− qj)) and X ′j =
(
x∗, q′j;x∗,

(
1− q′j

))
for j ∈ {1, ..., n}

with qj + q′j ≤ 1 and(
x∗, S ∪ S ′;x∗, (S ∪ S ′)c

)
∼ (X ′′1 , p1; . . . ;X ′′n, pn)

where X ′′j =
(
x∗, qj + q′j;x∗,

(
1− qj − q′j

))
for j ∈ {1, ..., n} .
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Figure 1: The Calibration Axiom

Figure 1 illustrates the Calibration Axiom that incorporates two require-
ments. First, the axiom guarantees the existence of a fixed first-stage prob-
ability measure such that the DM is indifferent between any subjective bet
and some compound lottery over objective bets with these fixed first-stage
probabilities. Second, the axiom requires that probabilities at the second-
stage are additive. That is, the DM is indifferent between a bet on the union
of two disjoint events and a compound lottery that additively aggregates the
winning probabilities of the corresponding compound lotteries at the second-
stage.

Axiom 7 (First-Stage Probabilistic Beliefs) Suppose that S1, ..., Sm is a par-
tition of Ω such that(

x∗, Sj;x∗, S
c
j

)
∼
(
X1
j , p1; . . . ;Xn

j , pn
)

where Xk
j =

(
x∗, qkj ;x∗,

(
1− qkj

))
for j = 1, ...,m and k = 1, ..., n with∑m

j=1 q
k
j ≤ 1, and p = (p1, . . . , pn) given by Axiom 6. Then

(x1, S1; ...;xm, Sm) ∼ (X1, p1; . . . ;Xn, pn)

where Xk =
(
x1, q

k
1 ; . . . ;xm, q

k
m

)
.

Figure 2 illustrates the First-Stage Probabilistic Beliefs Axiom. Fix a
partition of the state space. Suppose that for each element of this parti-
tion, the decision maker is indifferent between a bet on this element and a
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Figure 2: First-Stage Probabilistic Beliefs

compound lottery, where the first-stage is constant across elements in this
partition (its existence is guaranteed by Axiom 6), and the second stage are
bets. It is intuitive to think of the second-stage probabilities of winning the
bets as possible probability assessments of the corresponding event. Indeed,
the axiom requires that the DM’s preferences are consistent with respect to
these probability assessments. Formally, consider a general act, that gives
a different outcome on each event in the partition. Consider also a com-
pound lottery, where the first-stage is identical to the first-stage above and
the second-stage lotteries are obtained by assigning to each outcome the
corresponding probability assessment of the event on which this outcome is
attained. The axiom requires that the DM is indifferent between the act and
this induced compound lottery.

Theorem 1 shows that Calibration and First-Stage Probabilistic Beliefs
(together with the rest of the axioms) imply 2SPS, which captures hetero-
geneous ambiguity attitudes. That is, if the decision maker’s preferences
satisfy our calibration axioms then for every Savage-act, there exists an in-
different compound objective lottery, such that its first-stage represents the
DM’s assessments of possible probability distributions over the state space
(and therefore is constant across acts). Therefore, the DM is 2SPS. More-

13



over, the Theorem establishes theoretically the empirical link between ROCL
and probabilistic sophistication, independently of a specific functional repre-
sentation of preferences.

Theorem 1 1. % satisfies 1, 2, 3, 4, 6 and 7 if and only if preference over

acts satisfies two-stage probabilistic sophistication and W̃ (·) ≡ W (·).

2. If, in addition, Reduction of Compound Lotteries (Axiom 5) holds then
% satisfies probabilistic sophistication. In other words, if preferences
over acts are not probabilistically sophisticated then reduction fails.

Proof. Fix an event S in Σ. By the Calibration Axiom (Axiom 6) there
exist two-stage lotteries

(X1, p1; . . . ;Xn, pn) and (X ′1, p1; . . . ;X ′n, pn)

where Xj = (x∗, qj;x∗, 1− qj) and X ′j =
(
q′j, x

∗;x∗, 1− q′j
)

for j ∈ {1, ..., n}
satisfying

(x∗, S;x∗, S
c) ∼ (X1, p1; . . . ;Xn, pn) ,

(x∗, Sc;x∗, S) ∼ (X ′1, p1; . . . ;X ′n, pn)

and
(x∗,Ω) ∼ (X ′′1 , p1; . . . ;X ′′n, pn)

where X ′′j =
(
x∗, qj + q′j;x∗, 1−

(
qj + q′j

))
for j ∈ {1, ..., n} . This implies

that either qj + q′j = 1 or pj = 0. To see this, suppose that pj > 0 and
qj + q′j < 1 for some j. Then by Degenerate Lottery/Act Equivalence Axiom,
(x∗,Ω) ∼ (X, 1) where X = (x∗, 1) . Note that by Two-Stage Stochastic
Dominance we know that (X, 1) � (X ′′1 , p1; . . . ;X ′′n, pn) ∼ (x∗,Ω) which is a
contradiction. Moreover, by the Calibration Axiom pj > 0, so it must be
that qj + q′j = 1. Now let Pj (S) = qj. If S and S ′ are disjoint events then
by the Calibration Axiom (Axiom 6), Pj (S ∪ S ′) = Pj (S) + Pj (S ′) which
proves that Pj is additive.
Define the probability measure µ in ∆ (∆ (Ω)) by µ (Pj) = pj.
Fix an act f = (x1, S1; ...;xm;Sm) . Let

(x∗, Si;x∗, S
c
i ) ∼ (X1,i, p1; . . . ;Xn,i, pn)

where
Xji = (x∗, Pj (Si) ;x∗, 1− Pj (Si))

14



Use axiom 6 to inductively construct

(x∗, S1 ∪ · · · ∪ Si;x∗, (S1 ∪ · · · ∪ Si)c) ∼ (X ′1i, p1; . . . ;X ′ni, pn)

where
X ′ji =

(
x∗, q∗j,i−1 + Pj (Si) ;x∗, 1−

(
q∗j,i−1 + Pj (Si)

))
and q∗j,i = q∗j,i−1 + Pj (Si) . Note that

Pj (S1 ∪ · · · ∪ Si)
= Pj (S1 ∪ · · · ∪ Si−1) + Pj (Si)

= q∗j,i−1 + Pj (Si)

...

=
i∑

k=1

Pj (Sk) .

So Pj (S1 ∪ · · · ∪ Sm) =
∑m

k=1 Pj (Sk) ≤ 1 for j = 1, ..., n. Now let Xj =
(x1, Pj (S1) ; ...;xm, Pj (Sm)) , and let L1 = (X1, p1; ..;Xn, pn) . By Axiom 7,
(x1, S1; ...;xm, Sm) ∼ L. But note that L1 is the two stage lottery induced
by µ and f, i.e., L1 = Ψµ,f . Repeat the construction for an arbitrary act
g, and similarly construct the two-stage lottery induced by µ and g - Ψµ,g.

Therefore f � g if and only if W̃ (Ψµ,f ) = W (Ψµ,f ) ≥ W (Ψµ,g) = W̃ (Ψµ,g) .

Finally, W̃ is increasing with respect to second-order stochastic dominance
follows directly from Axiom 4, which proves part (1).

If � over acts is 2SPS and W̃ (·) ≡ W (·) axioms 1, 2, 3, 4 follow directly.
To prove axiom 6 (Calibration) take p := µ from 2SPS, and for all disjoint S
and S ′, let Xj = (x∗, vj (S) ;x∗, 1− vj (S)), X ′j = (x∗, vj (S ′) ;x∗, 1− vj (S ′))
and X ′′j = (x∗, vj (S ∪ S ′) ;x∗, 1− vj (S ∪ S ′)) =
= (x∗, vj (S) + vj (S ′) ;x∗, 1− (vj (S) + vj (S ′))) from additivity of second-
stage probabilities. Axiom 7 (First-Stage Probabilistic Beliefs) follows simi-
larly by letting p := µ.
To prove (2) define the probability measure m ∈ ∆ (Ω) so that m (S) =∑n

j=1 pjPj (S). If Reduction holds then Ψµ,f ∼ R (Ψµ,f ) . But note that
R (Ψµ,f ) is the probability measure induced from f using m, i.e., R (Ψµ,f ) =
Φm,f . For any lottery X define V (X) = W (δX) . Since reduction holds,
V (Φm,f ) = W

(
δΦm,f

)
= W (Ψµ,f ) . Therefore f � g if and only if V (Φm,f ) ≥

V (Φm,g) . Moreover, by Theorem 5 in Segal [41] V must be increasing with
respect to first-order stochastic dominance, proving part (2).
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In Appendix A we demonstrate the usage of this framework and axioms.
We start from a REU representation of preferences over compound lotteries
(one may be obtained from Kreps and Porteus [31] or Segal [41]). Using
the calibration and second order probabilistic belief axioms we show that
preferences over Savage-acts can be represented by the recursive structure
suggested by [29, 19, 35, 42]. The advantage of this representation is that
it explicitly builds on the relation between preferences over compound ob-
jective lotteries and Savage-acts and is based on behavioral testable axioms.
Note, though, that axioms 6 and 7 use an “there exists” qualifier. Some
decision theorists prefer axioms that are behavioral assumption on choice
objects without using this qualifier. The calibration approach we pursue in
the current study is different (as Sarin and Wakker [38] or Klibanoff et al
[29]), but deriving µ from choice behavior remains an important agenda (like
Seo [42] and Denti and Pomatto [13]).

One may wonder what are the advantages of our calibration approach
over simply substituting Machina and Schmeidler’s [33] probabilistic sophis-
tication for Klibanoff et al [29] assumption of subjective expected utility over
second-order acts. First, Klebanoff et al still require expected utility over
one-stage objective lotteries (their Assumption 1) – which we do not (see
the Recursive Non-Expected Utility model – (2)). Second, the proposed ap-
proach does not generate the “calibration” link between subjective acts and
compound objective lotteries, which is the empirical observation motivating
our approach.

The second part of the Theorem establishes the theoretical link between
reduction and ambiguity neutrality, independently of a specific functional
form. In Anscombe and Aumann framework, Seo [42] (in an independent
and concurrent study) was able to prove this link for the REU representation.
However, Halevy’s findings [25] indicate that the relation between ambiguity
neutrality and ROCL holds beyond the REU preferences, which account for
only about one-half of the decision makers that hold a non-neutral attitude
towards ambiguity. On the other hand, Seo proved a tight equivalence result
between ROCL and ambiguity neutrality, while our result establishes only
one-way direction from ROCL to ambiguity neutrality, as the DM may not
reduce compound lotteries that cannot be induced from an arbitrary act
using any first-stage beliefs.
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5.1 Discussion: Relation with Experimental Findings

Theorem 1 explains two regularities observed in Halevy [25] and Chew, Miao
and Zhong [9]: different decision makers may hold different first-stage beliefs
(heterogeneous µ), and even for identical first-stage beliefs, the evaluation of
the compound lottery induced by the act through the first-stage belief may
vary (heterogeneous W̃ (·)).

In order to demonstrate this point consider a DM who evaluates a bet
on the color of a ball drawn from an urn, containing ten balls with un-
known composition of red and black balls. A bet on the correct color
wins $x and an incorrect bet wins $0. The natural second-stage is given
by: {($x, k/10; $x, 1− k/10) : k ∈ {0, . . . , 10}}.

If the DM’s preferences satisfy reduction of compound (objective) lotter-
ies, then she will be indifferent among all compound objective lotteries with
a symmetric first-stage measure, and the above second-stage. The second
part of Theorem 1 implies that if the DM holds any symmetric first-stage
subjective belief, she will be indifferent between the ambiguous Savage act
described above and these symmetric compound objective lotteries (and in
particular, a first-stage objective lottery that is degenerate at the second-
stage lottery of ($x, 0.5; $0, 0.5), which corresponds to a bet on the color of
a ball drawn from an urn containing 5 red and 5 black balls). This holds for
any utility function used to evaluate compound lotteries, as long as it satis-
fies ROCL. This is exactly Halevy’s [25] first experimental result. Therefore
the second part of Theorem 1 provides the theoretical foundation that is
necessary to understand this observation.

If, however, the DM is not ambiguity neutral the experimental results in
Halevy [25] and Chew et al [9] indicate that she does not satisfy reduction
of compound objective lotteries, and her preference ordering over Savage-
acts is consistent with her preferences over compound lotteries. In other
words, the DM does not make a distinction between the compound lottery
induced by the act through a subjective first-stage belief, and a compound
lottery in which the first-stage (appropriately calibrated) is objectively given.
The first-stage probability measure in which each DM is indifferent between
the compound lottery and the Savage act, varies across decision makers. In
other words, the first-stage belief varies across decision makers. For exam-
ple, while one DM may be indifferent between the ambiguous Savage lottery
and a compound lottery where the first-stage is uniform, another may be
indifferent between the same act and a compound symmetric lottery with

17



hypergeometric first-stage (10 balls are sampled without replacement out of
20 balls, half of which are red and half black). As a result, even if two de-
cision makers have identical preferences over compound objective lotteries
they might differ in their evaluation of the ambiguous (Savage) act since it
induces different compound lotteries, through the different first-stage beliefs.

Moreover, the preference ordering over compound objective lotteries varies
across decision makers. In particular, Halevy [25] and Chew et al [9] found
that two utility functions can represent most decision makers’ preferences
(with about equal frequency). If the DM holds recursive non-expected util-
ity (RNEU) preferences, she uses a non-expected utility function to evaluate
each stage of the compound lottery (like in Segal [40]). As a result, she is
indifferent between a compound lottery with a degenerate first-stage (that
assigns probability 1 to a second-stage lottery that pays $x with probabil-
ity 0.5) and a compound lottery with an extreme first-stage (that assigns
probability 0.5 to a second-stage lottery that pays $x with probability 1 and
probability 0.5 to a second-stage lottery that pays $x with probability 0) –
preferences termed by Segal [41] “time neutral.” If, however, the DM’s pref-
erences are represented by REU, her ranking of compound objective lotteries
is monotonically decreasing in the dispersion of the first-stage probability
measure.

The experimental evidence [25, 9] indicate that (for most DMs) the rank-
ing of the Savage act is consistent with a ranking of the compound lottery
induced by the act through the first-stage belief according to RNEU or REU,
which were derived in the domain of compound objective lotteries. That is,
the evidence is consistent with 2SPS preferences and the fact that the func-
tion W̃ (·) used to evaluate the compound lottery induced by an act through
the first-stage belief coincides with the function W (·), used to evaluate com-
pound objective lotteries.

Although the REU representation has been applied extensively to deci-
sion making under ambiguity (by Klibanoff et al [29], Ergin and Gul [19],
Nau [35]), all those applications assume that the source for the failure of
reduction is the distinction between subjective (first-stage) and objective
(second-stage) risks. Although formally speaking they are 2SPS according
to our definition, their domain does not include compound objective lotteries.
Hence, the question whether the utility function they derive, which is used
to evaluate the compound lottery induced by the act through the first-stage
belief, coincides with a utility function used to evaluate compound objec-
tive lotteries is a matter of interpretation that will be further discussed in
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Section 7.1. As noted above, the experimental finding in Halevy [25] and
Chew et al [9] demonstrate that there is a tight correspondence between the
two. That is, the DM’s ranking of a Savage act is consistent with her rank-
ing of compound objective lotteries. As noted above, Seo [42] provides an
axiomatic foundation for the REU model based on the original Anscombe-
Aumann framework, in which ambiguity aversion is tied to violation of the
reduction axiom in that model, through relaxation of the “reversal of order”
axiom in Anscombe and Aumann [4].12 Our result (Theorem 1) explains the
relation between preferences over objective compound lotteries and Savage
acts in a minimal domain in which both exist, without relying on a specific
functional form and without excluding common preference ranking (either
REU or RNEU).

6 Identification of First-Stage Beliefs: an ex-

ample

An important implicit component in the Calibration axioms and the defini-
tion of 2SPS is that the set of second-stage probability measures is exogenous
and objectively known. This set is apparent from the problem at hand. We
believe that this discipline is necessary in order for the agent to be rational.
Otherwise, a DM might assign positive first-stage probability to a second-
stage measure that is known to be false. Under this maintained assumption it
may be easy to identify the first-stage probabilities directly using continuity
of preferences. To illustrate this point, define continuity:

Axiom 8 For any act f and simple lotteries X1, ..., Xn,
the sets {(p1, ..., pn) |f % (X1, p1; . . . ;Xn, pn)} and
{(p1, ..., pn) | (X1, p1; . . . ;Xn, pn) % f} are both closed.

We illustrate how to identify the first-stage probabilities with a simple
example in which for each distribution there exists an event such that betting
on that event is essentially betting on the distribution. This simple setup
is reminiscent to that considered by Klibanoff et al [29], though it is not
required for our general formulation. Specifically, consider an urn that has

12For the importance of relaxing the “revarsal of order” in the study of hedging under
ambiguity see Saito [37], Ke and Zhang [28] and Gul and Pesendorfer [24]. For experimental
evidence on “reversal of order” see Baillon et al [5].
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two balls that are each either red or black. Suppose that the decision maker
draws both balls in order from this urn and considers various bets on the color
of the two balls. A natural state space for this problem is {BB,BR,RB,RR}
where IJ (I, J ∈ {B,R}) denotes a state in which the first ball is of color
I and the second ball is of color J . The possible second-stage probabilities
are also apparent from the description since either both balls are black, or
both balls are red, or one ball is black and the other ball is red. These three
possibilities correspond to three possible probability distributions. Denote
by P2B the probability measure that assigns probability one to the state BB,
by P1B1R the probability measure that assigns probability 1 to the event
{BR,RB} , and by P2R the probability measure that assigns probability 1
to the state RR. Let p2B, p1B1R and p2R be the first-stage probabilities on
the corresponding probability measures. Consider first the bet where the
decision maker gets x > 0 dollars if both balls are red and zero otherwise.
This bet corresponds to f (RR) = x and f (BR) = f (RB) = f (BB) = 0.
By the continuity axiom there exists a compound lottery (X1

1 , q;X
1
2 , 1− q)

where X1
1 = (x, 1) and X1

2 = (0, 1) such that f ∼ (X1
1 , q;X

1
2 , 1− q) . Thus

we have identified that p2R = q. We can identify p1B1R and p2B in a similar
way. Identification of the DM’s first-stage beliefs in the general case is an
important and non-trivial problem, which is beyond the scope of the current
study.

7 Beyond 2SPS: A Two Urn Thought Exper-

iment

In this section we provide an example of a preference relation that is not two-
stage probabilistically sophisticated. Our example has the flavor of Ellsberg’s
two color urn example. The first urn (Urn 1) has two balls that are each either
red or black. Thus this urn may contain two black balls, two red balls, or
one black and one red ball. There is no further information on how the urn
is filled. The other urn (Urn 2) is filled in the following way: two balls are
put in the urn where each ball is equally likely to be black or red. That is,
the urn contains two black or two red balls - each with probability 1/4, and
one black and one red ball with probability 1/2.

Two balls are drawn from both urns in order without replacement. We
will consider several bets on the color of these balls. The state space for this
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problem can be written as:

Ω = {(ω1, ω2) |ω1, ω2 ∈ {BB,BR,RB,RR}}

where ωi specifies the colors of the balls from Urn i in the order they are
drawn. For example, (BB,BR) corresponds to the state where both balls
drawn from Urn 1 are black and the first ball drawn from Urn 2 is black and
the second is red.

In the following, we will discuss several acts (bets), and a possible pref-
erence ordering over these acts. If this preference is 2SPS then each act
corresponds to a compound lottery. As discussed above, in order to identify
the corresponding compound lottery, we consider only second-stage measures
that are consistent with the possible composition of the urns. The following
table describes all possible compositions of the two urns and the correspond-
ing second-stage measures over the states.

Urns Contain Probabilities of States (with positive probability)
(2B, 2B) P1 ((BB,BB)) = 1
(2B, 1B1R) P2 ((BB,BR)) = 1/2, P2 ((BB,RB)) = 1/2
(2B, 2R) P3 ((BB,RR)) = 1
(1B1R, 2B) P4 ((BR,BB)) = 1/2, P2 ((RB,BB)) = 1/2

(1B1R, 1B1R)
P5 ((BR,BR)) = 1/4, P5 ((BR,RB)) = 1/4,
P5 ((RB,BR)) = 1/4, P5 ((RB,RB)) = 1/4

(1B1R, 2R) P6 ((BR,RR)) = 1/2, P6 ((RB,RR)) = 1/2
(2R, 2B) P7 ((RR,BB)) = 1
(2R, 1B1R) P8 ((RR,BR)) = 1/2, P8 ((RR,RB)) = 1/2
(2R, 2R) P9 ((RR,RR)) = 1

A two-stage probabilistically sophisticated DM assigns a probability to
each of the distributions P1, ..., P9.

13 Denote the probability assigned to dis-
tribution Pi by pi. Let α, β, γ, α′, β′, γ′ be defined by

α = p1 + p2 + p3, β = p4 + p5 + p6, γ = p7 + p8 + p9,

α′ = p1 + p4 + p7, β
′ = p2 + p5 + p8, γ

′ = p3 + p6 + p9.

13Note that we restrict the DM’s support of first-stage belief to distributions that are
consistent with the physical environment. This relates to a known identification issue in all
two stage models. As discussed by Seo [42] on page 1585 and Appendix C, unless the ana-
lyst is willing to restrict the utility function to a particular functional form, identification
(uniqueness) of first-stage beliefs is not possible even within the REU model.
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Next we consider the following four pairs of bets.
Betting on the color of the first ball drawn from Urn 1 : The DM

chooses black or red. If the DM matches the color of the first ball drawn
from Urn 1, she wins x dollars where x > 0. If the bet is incorrect, the DM
receives zero. Bets on either color can be represented as a mapping from
states to {0, x} as shown below:

Bet on black from Urn 1

Urn 1\Urn 2 BB BR RB RR
BB x x x x
BR x x x x
RB 0 0 0 0
RR 0 0 0 0

Bet on red from Urn 1

Urn 1\Urn 2 BB BR RB RR
BB 0 0 0 0
BR 0 0 0 0
RB x x x x
RR x x x x

A second order probabilistically sophisticated DM converts these two acts
into the compound lotteries as shown in Figures 3 and 4.

1 0.5 0.5 1

x x 0 0

α β γ

Figure 3: The compound lottery induced by a bet that the first ball drawn
from Urn 1 is Black

Suppose that the DM is indifferent between betting on red and betting on
black. Two stage stochastic dominance implies that α = γ.

Betting whether the balls drawn from Urn 1 are the same or

22



1 0.5 0.5 1

0 x 0 x

α β γ

Figure 4: The compound lottery induced by a bet that the first ball drawn
from Urn 1 is Red.

different color: These bets can be represented as the following two acts:

Bet on the two balls from Urn 1 being of the same color

Urn 1\Urn 2 BB BR RB RR
BB x x x x
BR 0 0 0 0
RB 0 0 0 0
RR x x x x

Bet on the two balls from Urn 1 being of different color

Urn 1\Urn 2 BB BR RB RR
BB 0 0 0 0
BR x x x x
RB x x x x
RR 0 0 0 0

A second order probabilistically sophisticated DM converts these two acts
into the compound lotteries shown in Figures 5 and 6.

1 1

x x

α β γ

1

0

Figure 5: The compound lottery induced by a bet that both balls drawn
from Urn 1 have the same color
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1 1

0 0

α β γ

1

x

Figure 6: The compound lottery induced by a bet that the balls drawn from
Urn 1 have the different color

Suppose that the DM is indifferent between these bets as well.14 Two
stage stochastic dominance implies that β = α + γ. Thus we must have
α = γ = 1/4 and β = 1/2.

Suppose also that the DM exhibits similar preferences for bets generated
from Urn 2. That is, the DM is indifferent between betting on whether the
first ball drawn from Urn 2 is red or black, and whether the two balls drawn
from Urn 2 are of the same or different color. Similar reasoning implies that
we must have α′ = γ′ = 1/4 and β′ = 1/2.

Finally, suppose that the DM is asked to choose an urn and bet on the
color of the first ball drawn from the chosen urn. Suppose that the DM
strictly prefers to bet on either color from the known urn (Urn 2) to betting
on either color from the unknown urn (Urn 1). If her preferences were 2SPS,
a bet on the color of the first ball drawn from either urn would induce the
same compound lottery and she would be indifferent among all such bets.
Therefore, if the hypothetical preferences described above display strict pref-
erence for a bet on the known urn to a bet on the unknown urn, they are
inconsistent with 2SPS.

Next, we discuss two possible interpretations of this example.

14It is important to note that evolutionary (Robson [36]) and behavioral (Halevy and
Feltkamp [26]) rationals for ambiguity aversion rely on the species’ or the decision maker’s
regular environment to incorporate positive correlation among different risks. This reason-
ing may suggest that the DM will prefer a bet that the two balls are of the same color. In
other words, indifference between the bets above indicates that the DM believes that the
color assignment of the first ball is uncorrelated with the color assignment of the second
ball. With this in mind, we view this indifference as an empirical question, that is worth
further experimental investigation. Our goal in this example, however, is to provide a se-
quence of plausible decisions that is inconsistent with 2SPS. One of the control treatments
in Epstein and Halevy [15] (see Appendix A.2.1 in their paper) used a similar question to
control for non-neutral attitude to ambiguity about correlation.
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7.1 Discussion

It is useful to compare this example to the standard two-color Ellsberg ex-
ample. In that case the DM is indifferent between betting on red or black
in the ambiguous urn. Probabilistic sophistication implies that the DM’s
subjective probability of either color is one half. However (goes the standard
argument), preference for betting on the risky rather than the ambiguous urn
(together with monotonicity with respect to first order stochastic dominance)
implies that this belief must be smaller than one half. Hence, preferences in
the Ellsberg example cannot be probabilistically sophisticated. A way to ac-
commodate failure of probabilistic sophistication is to consider more general
preferences, like those that are two-stage probabilistically sophisticated. This
generalization seem to be consistent with the existing experimental evidence.
Alternatively, several authors (Tversky and Wakker [44], Chew and Sagi [11]
and Ergin and Gul [19]) argue that the failure of probabilistic sophistication
is due to the fact that the DM perceives the two urns as two different sources
of uncertainty: objective and subjective. If attention is restricted to only
one source, probabilistic sophistication may be maintained on the restricted
domain. For example, the DM uses V (·) to evaluate one-stage objective

lotteries, and Ṽ (·) to evaluate the lottery induced by the act through her
belief. Machina and Schmeidler [33] are silent on this issue, although in their
later work [34] the utility functions over the objective and subjective domains
coincide, which rules out source preference.

The thought experiment presented above and the failure of 2SPS admits
two similar interpretations. To accommodate strict preference for betting on
Urn 2 one could consider higher orders of compound lotteries (e.g. three-
stage), in which the DM may be three-stage probabilistically sophisticated.
The need to allow for higher orders of compound lotteries suggests that this
avenue of considering higher order probabilistic sophistication might not be
of a closed form. In this case, the level of probabilistic sophistication may
be determined endogenously by the model considered. Alternatively, the
DM may perceive the two urns as different sources of compound uncertainty:
subjective and objective. The DM may be 2SPS on each domain separately,
but use different utility functions to evaluate compound objective lotteries
and compound lotteries induced by an act through the first-stage belief (i.e.

W (·) may be different from W̃ (·)). For example, the DM’s preferences on
the subjective domain may be represented by REU, and she may be expected
utility (and satisfy reduction) on the objective domain (which is Klibanoff et
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al’s [29] preferred interpretation of their model). However, if one is willing to
admit source preference as discussed above, Ellsberg-type preference can be
accommodated without resorting to higher order beliefs. Furthermore, the
empirical evidence suggests that most DMs have preferences over acts that
can be calibrated to their preferences over compound objective lotteries as
presented in this study.
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7.1

A Recursive Expected Utility Representation

In this appendix we provide an axiomatic foundation for the recursive ex-
pected utility model. Fix a continuous function u : C → R and a strictly
increasing continuous function ρ : R→ R and pj ≥ 0 for j = 1, ..., n with∑n

j=1 pj = 1.We define VKP (L) ≡
∑n

j=1 ρ (E (u (Xj))) pj for all L = (X1, p1; . . . ;Xn, pn) .

Axiom 9 (Kreps-Porteus)There exists a continuous function u : C → R, a
strictly increasing continuous function ρ : R→ R and pj ≥ 0 for j = 1, ..., n
with

∑n
j=1 pj = 1 such that � on L2 is represented by VKP , i.e.,

L1 � L2 if and only if VKP (L1) ≥ VKP (L2) .

This axiom can be obtained from more basic axioms for example as in
Kreps and Porteus [31] or Segal [41].

Next we state the representation result:

Proposition 1 � satisfies Weak Order, Calibration, Second Order Proba-
bilistic Beliefs and Kreps-Porteus if and only there exists p1, ..., pn ≥ 0 with∑n

i=1 pi = 1 and probability measures P1, ..., Pn : Σ → [0, 1] such that V can
be extended to the set of all acts through

VKP (f) = VKP (Ψµ,f ) =
n∑
i=1

ρ

(
m∑
j=1

u (xj)Pi (Sj)

)
pi

where f = (x1, S1; ...;xm, Sm) and the function VKP represents the preference
relation � over all gambles.

Proof. By axiom 9 there exists a continuous function u : X → R, a strictly
increasing continuous function ρ : R→ R and a probability measure P :
R → [0, 1] such that for any L1 and L2 in L2,

L1 � L2 if and only if VKP (L1) ≥ VKP (L2) .

Note that VKP satisfies Two-stage Stochastic Dominance. It follows from
the proof of Theorem 1 that there exists µ ∈ ∆ (∆ (Ω)) , and ν1, ..., νn ∈ ∆ (Ω)
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such that µ (νj) > 0 and
∑n

j=1 µ (νj) = 1, and a functional W : ∆ (∆ (X ))→
R increasing with respect to two-stage stochastic dominance such that

f % g ⇔ VKP (Ψµ,f ) ≥ VKP (Ψµ,g)

where Ψµ,f , Ψµ,g are the compound lotteries induced by the acts f and g
through µ. This concludes the proof.
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